

April 26, 2012 http://www.modbus.org 1/50

MODBUS APPLICATION PROTOCOL SPECIFICATION
V1.1b3

CONTENTS

1 Introduction .. 2
1.1 Scope of this document ... 2

2 Abbreviations ... 2
3 Context ... 3
4 General description .. 3

4.1 Protocol description ... 3
4.2 Data Encoding ... 5
4.3 MODBUS Data model .. 6
4.4 MODBUS Addressing model .. 7
4.5 Define MODBUS Transaction .. 8

5 Function Code Categories .. 10
5.1 Public Function Code Definition ... 11

6 Function codes descriptions ... 11
6.1 01 (0x01) Read Coils ... 11
6.2 02 (0x02) Read Discrete Inputs ... 12
6.3 03 (0x03) Read Holding Registers ... 15
6.4 04 (0x04) Read Input Registers ... 16
6.5 05 (0x05) Write Single Coil .. 17
6.6 06 (0x06) Write Single Register ... 19
6.7 07 (0x07) Read Exception Status (Serial Line only) ... 20
6.8 08 (0x08) Diagnostics (Serial Line only) .. 21

6.8.1 Sub-function codes supported by the serial line devices 22
6.8.2 Example and state diagram ... 24

6.9 11 (0x0B) Get Comm Event Counter (Serial Line only) .. 25
6.10 12 (0x0C) Get Comm Event Log (Serial Line only) ... 26
6.11 15 (0x0F) Write Multiple Coils .. 29
6.12 16 (0x10) Write Multiple registers .. 30
6.13 17 (0x11) Report Server ID (Serial Line only) .. 31
6.14 20 (0x14) Read File Record ... 32
6.15 21 (0x15) Write File Record ... 34
6.16 22 (0x16) Mask Write Register .. 36
6.17 23 (0x17) Read/Write Multiple registers ... 38
6.18 24 (0x18) Read FIFO Queue ... 40
6.19 43 (0x2B) Encapsulated Interface Transport ... 41
6.20 43 / 13 (0x2B / 0x0D) CANopen General Reference Request and Response

PDU .. 42
6.21 43 / 14 (0x2B / 0x0E) Read Device Identification ... 43

7 MODBUS Exception Responses ... 47
Annex A (Informative): MODBUS RESERVED FUNCTION CODES, SUBCODES AND

MEI TYPES .. 50
Annex B (Informative): CANOPEN GENERAL REFERENCE COMMAND 50

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 2/50

1 Introduction

1.1 Scope of this document
MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model,
which provides client/server communication between devices connected on different types of
buses or networks.
The industry’s serial de facto standard since 1979, MODBUS continues to enable millions of
automation devices to communicate. Today, support for the simple and elegant structure of
MODBUS continues to grow. The Internet community can access MODBUS at a reserved
system port 502 on the TCP/IP stack.
MODBUS is a request/reply protocol and offers services specified by function codes.
MODBUS function codes are elements of MODBUS request/reply PDUs. The objective of this
document is to describe the function codes used within the framework of MODBUS
transactions.

MODBUS is an application layer messaging protocol for client/server communication between
devices connected on different types of buses or networks.
It is currently implemented using:
y TCP/IP over Ethernet. See MODBUS Messaging Implementation Guide V1.0a.
y Asynchronous serial transmission over a variety of media (wire : EIA/TIA-232-E, EIA-422,

EIA/TIA-485-A; fiber, radio, etc.)
y MODBUS PLUS, a high speed token passing network.

TCP

Modbus on TCP

MODBUS APPLICATION LAYER

IP

Ethernet
Physical layer

Ethernet II /802.3

EIA/TIA-232 or
EIA/TIA-485

Master / Slave

Physical layer

MODBUS+ / HDLC

Other

Other

Figure 1: MODBUS communication stack

References
1. RFC 791, Internet Protocol, Sep81 DARPA

2 Abbreviations

ADU Application Data Unit
HDLC High level Data Link Control
HMI Human Machine Interface
IETF Internet Engineering Task Force
I/O Input/Output
IP Internet Protocol
MAC Media Access Control
MB MODBUS Protocol

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 3/50

MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transmission Control Protocol

3 Context

The MODBUS protocol allows an easy communication within all types of network
architectures.

Figure 2: Example of MODBUS Network Architecture

Every type of devices (PLC, HMI, Control Panel, Driver, Motion control, I/O Device…) can use
MODBUS protocol to initiate a remote operation.
The same communication can be done as well on serial line as on an Ethernet TCP/IP
networks. Gateways allow a communication between several types of buses or network using
the MODBUS protocol.

4 General description

4.1 Protocol description
The MODBUS protocol defines a simple protocol data unit (PDU) independent of the
underlying communication layers. The mapping of MODBUS protocol on specific buses or
network can introduce some additional fields on the application data unit (ADU).

Additional address Function code Data Error check

ADU

PDU
Figure 3: General MODBUS frame

PLC PLCHMI I/ O I/ O I/ ODrive

MODBUS ON TCP/IP

Gateway Gateway Gateway

M
O

DB
US

 O
N

M
B+

M
O

DB
US

 O
N

RS
23

2

M
O

DB
US

 O
N

RS
48

5

Device

HMI

PLC PLC

Drive

I/ O
I/ O

I/ O

I/ O

Device

MODBUS COMMUNICATION

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 4/50

The MODBUS application data unit is built by the client that initiates a MODBUS transaction.
The function indicates to the server what kind of action to perform. The MODBUS application
protocol establishes the format of a request initiated by a client.
The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the
range of 1 ... 255 decimal (the range 128 – 255 is reserved and used for exception
responses). When a message is sent from a Client to a Server device the function code field
tells the server what kind of action to perform. Function code "0" is not valid.
Sub-function codes are added to some function codes to define multiple actions.
The data field of messages sent from a client to server devices contains additional information
that the server uses to take the action defined by the function code. This can include items
like discrete and register addresses, the quantity of items to be handled, and the count of
actual data bytes in the field.
The data field may be nonexistent (of zero length) in certain kinds of requests, in this case the
server does not require any additional information. The function code alone specifies the
action.
If no error occurs related to the MODBUS function requested in a properly received MODBUS
ADU the data field of a response from a server to a client contains the data requested. If an
error related to the MODBUS function requested occurs, the field contains an exception code
that the server application can use to determine the next action to be taken.
For example a client can read the ON / OFF states of a group of discrete outputs or inputs or
it can read/write the data contents of a group of registers.
When the server responds to the client, it uses the function code field to indicate either a
normal (error-free) response or that some kind of error occurred (called an exception
response). For a normal response, the server simply echoes to the request the original
function code.

Function code Data Request

Client Server

Initiate request

Perform the action
Initiate the response

Receive the response
Function code Data Response

Figure 4: MODBUS transaction (error free)

For an exception response, the server returns a code that is equivalent to the original function
code from the request PDU with its most significant bit set to logic 1.

Figure 5: MODBUS transaction (exception response)

Client Server

Initiate request

Error detected in the action
Initiate an error

Exception Function code Receive the response Exception code

Function code Data Request

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 5/50

) Note: It is desirable to manage a time out in order not to indefinitely wait for an answer which will perhaps
never arrive.

The size of the MODBUS PDU is limited by the size constraint inherited from the first
MODBUS implementation on Serial Line network (max. RS485 ADU = 256 bytes).
Therefore:
MODBUS PDU for serial line communication = 256 - Server address (1 byte) - CRC (2
bytes) = 253 bytes.

Consequently:
RS232 / RS485 ADU = 253 bytes + Server address (1 byte) + CRC (2 bytes) = 256 bytes.
TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.

The MODBUS protocol defines three PDUs. They are :

x MODBUS Request PDU, mb_req_pdu
x MODBUS Response PDU, mb_rsp_pdu
x MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined as:

mb_req_pdu = {function_code, request_data}, where
function_code = [1 byte] MODBUS function code,
request_data = [n bytes] This field is function code dependent and usually

 contains information such as variable references,
 variable counts, data offsets, sub-function codes etc.

The mb_rsp_pdu is defined as:
 mb_rsp_pdu = {function_code, response_data}, where

function_code = [1 byte] MODBUS function code
response_data = [n bytes] This field is function code dependent and usually

 contains information such as variable references,
 variable counts, data offsets, sub-function codes, etc.

The mb_excep_rsp_pdu is defined as:
 mb_excep_rsp_pdu = {exception-function_code, request_data}, where

exception-function_code = [1 byte] MODBUS function code + 0x80
exception_code = [1 byte] MODBUS Exception Code Defined in table

 "MODBUS Exception Codes" (see section 7).

4.2 Data Encoding
x MODBUS uses a ‘big-Endian’ representation for addresses and data items. This means

that when a numerical quantity larger than a single byte is transmitted, the most significant
byte is sent first. So for example

 Register size value
 16 - bits 0x1234 the first byte sent is 0x12 then 0x34

) Note: For more details, see [1] .

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 6/50

4.3 MODBUS Data model
MODBUS bases its data model on a series of tables that have distinguishing characteristics.
The four primary tables are:

Primary tables Object type Type of
access

Comments

 Discretes Input Single bit Read-Only
This type of data can be provided by an I/O system.

Coils Single bit Read-Write
This type of data can be alterable by an application
program.

Input Registers 16-bit word Read-Only
This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write
This type of data can be alterable by an application
program.

The distinctions between inputs and outputs, and between bit -addressable and word-
addressable data items, do not imply any application behavior. It is perfectly acceptable, and
very common, to regard all four tables as overlaying one another, if this is the most natural
interpretation on the target machine in question.
For each of the primary tables, the protocol allows individual selection of 65536 data items,
and the operations of read or write of those items are designed to span multiple consecutive
data items up to a data size limit which is dependent on the transaction function code.
It’s obvious that all the data handled via MODBUS (bits, registers) must be located in device
application memory. But physical address in memory should not be confused with data
reference. The only requirement is to link data reference with physical address.
MODBUS logical reference numbers, which are used in MODBUS funct ions, are unsigned
integer indices starting at zero.

x Implementation examples of MODBUS model
The examples below show two ways of organizing the data in device. There are different
organizations possible, but not all are described in this document. Each de vice can have its
own organization of the data according to its application

Example 1 : Device having 4 separate blocks
The example below shows data organization in a device having digital and analog, inputs and
outputs. Each block is separate because data from different blocks have no correlation. Each
block is thus accessible with different MODBUS functions.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Holding
Registers

Figure 6 MODBUS Data Model with separate block

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 7/50

Example 2: Device having only 1 block
In this example, the device has only 1 data block. The same data can be reached via several
MODBUS functions, either via a 16 bit access or via an access bit.

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Holding
Registers

R
W

R

W

Figure 7 MODBUS Data Model with only 1 block

4.4 MODBUS Addressing model

The MODBUS application protocol defines precisely PDU addressing rules.

In a MODBUS PDU each data is addressed from 0 to 65535.
It also defines clearly a MODBUS data model composed of 4 blocks that comprises several
elements numbered from 1 to n.

In the MODBUS data Model each element within a data block is numbered from 1 to n.
Afterwards the MODBUS data model has to be bound to the device application (IEC-61131
object, or other application model).
The pre-mapping between the MODBUS data model and the device application is totally
vendor device specific.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 8/50

Figure 8 MODBUS Addressing model

The previous figure shows that a MODBUS data numbered X is addressed in the MODBUS
PDU X-1.

4.5 Define MODBUS Transaction
The following state diagram describes the generic processing of a MODBUS transaction in
server side.

Discrete Input

Coils

Input Registers

Holding Registers

MODBUS data modelDevice application

1
.
.
.
1
.
5
.
1
2
.

MODBUS PDU addresses

1
.
.
55

Read Registers 54

Read Registers 1

Read coils 4

Read input 0

MODBUS StandardApplication specific
Mapping

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 9/50

V

Validate function
code

Validate data
value

ExceptionCode = 3

Wait for a MB
indication

ExceptionCode = 2

ExeptionCode = 1

Send Modbus
Exception
Response

ExceptionCode = 4, 5, 6

Execute MB
function

Send Modbus
Response

Validate data
Address

[invalid]

[invalid]

[invalid]

[valid]

[invalid]

[valid]

[valid]

[valid]

[Receive MB indication]

Figure 9 MODBUS Transaction state diagram

Once the request has been processed by a server, a MODBUS response using the
adequate MODBUS server transaction is built.
Depending on the result of the processing two types of response are built :

� A positive MODBUS response :
� the response function code = the request function code

� A MODBUS Exception response (see section 7):

� the objective is to provide to the client relevant information concerning the
error detected during the processing ;

� the exception function code = the request function code + 0x80 ;
� an exception code is provided to indicate the reason of the error.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 10/50

5 Function Code Categories

There are three categories of MODBUS Functions codes. They are :

Public Function Codes

x Are well defined function codes ,
x guaranteed to be unique,
x validated by the MODBUS.org community,
x publicly documented
x have available conformance test,
x includes both defined public assigned function codes as well as unassigned function

codes reserved for future use.
User-Defined Function Codes

x there are two ranges of user-defined function codes, i.e. 65 to 72 and from 100 to 110
decimal.

x user can select and implement a function code that is not supported by the
specification.

x there is no guarantee that the use of the selected function code will be unique
x if the user wants to re-position the functionality as a public function code, he must

initiate an RFC to introduce the change into the public category and to have a new
public function code assigned.

x MODBUS Organization, Inc expressly reserves the right to develop the proposed RFC.
Reserved Function Codes

x Function Codes currently used by some companies for legacy products and that
are not available for public use.

x Informative Note: The reader is asked refer to Annex A (Informative) MODBUS
RESERVED FUNCTION CODES, SUBCODES AND MEI TYPES.

Figure 10 MODBUS Function Code Categories

 User Defined Function codes

1

65

100
110

72
 User Defined Function codes

PUBLIC function codes

PUBLIC function codes

PUBLIC function codes

127

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 11/50

5.1 Public Function Code Definition

 Function Codes
code Sub

code
(hex) Section

Data
Access

Bit
access

Physical Discrete
Inputs

Read Discrete Inputs 02 02 6.2

Internal Bits
 Or

 Physical coils

Read Coils 01 01 6.1
Write Single Coil 05 05 6.5
Write Multiple Coils 15 0F 6.11

16 bits
access

Physical Input
Registers

Read Input Register 04 04 6.4

Internal Registers
 Or

Physical Output
Registers

Read Holding Registers 03 03 6.3
Write Single Register 06 06 6.6
Write Multiple Registers 16 10 6.12
Read/Write Multiple Registers 23 17 6.17
Mask Write Register 22 16 6.16
Read FIFO queue 24 18 6.18

File record access
Read File record 20 14 6.14
Write File record 21 15 6.15

Diagnostics

Read Exception status 07 07 6.7
Diagnostic 08 00-18,20 08 6.8
Get Com event counter 11 OB 6.9
Get Com Event Log 12 0C 6.10
Report Server ID 17 11 6.13
Read device Identification 43 14 2B 6.21

Other Encapsulated Interface
Transport

43 13,14 2B 6.19

 CANopen General Reference 43 13 2B 6.20

6 Function codes descriptions

6.1 01 (0x01) Read Coils
This function code is used to read from 1 to 2000 contiguous status of coils in a remote
device. The Request PDU specifies the starting address, i.e. the address of the first coil
specified, and the number of coils. In the PDU Coils are addressed starting at zero. Therefore
coils numbered 1-16 are addressed as 0-15.
The coils in the response message are packed as one coil per bit of the data field. Status is
indicated as 1= ON and 0= OFF. The LSB of the first data byte contains the output addressed
in the query. The other coils follow toward the high order end of this byte, and from low order
to high order in subsequent bytes.
If the returned output quantity is not a multiple of eight, the remaining bits in the final data
byte will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Request

Function code 1 Byte 0x01
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x01
Byte count 1 Byte N*
Coil Status n Byte n = N or N+1

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 12/50

*N = Quantity of Outputs / 8, if the remainder is different of 0 � N = N+1
Error

Function code 1 Byte Function code + 0x80
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete outputs 20–38:

Request Response
Field Name (Hex) Field Name (Hex)
Function 01 Function 01
Starting Address Hi 00 Byte Count 03
Starting Address Lo 13 Outputs status 27-20 CD
Quantity of Outputs Hi 00 Outputs status 35-28 6B
Quantity of Outputs Lo 13 Outputs status 38-36 05

The status of outputs 27–20 is shown as the byte value CD hex, or binary 1100 1101. Output
27 is the MSB of this byte, and output 20 is the LSB.
By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right.
Thus the outputs in the first byte are ‘27 through 20’, from left to right. The next byte has
outputs ‘35 through 28’, left to right. As the bits are transmitted serially, they flow from LSB to
MSB: 20 . . . 27, 28 . . . 35, and so on.
In the last data byte, the status of outputs 38-36 is shown as the byte value 05 hex, or binary
0000 0101. Output 38 is in the sixth bit position from the left, and output 36 is the LSB of this
byte. The five remaining high order bits are zero filled.

) Note: The five remaining bits (toward the high order end) are zero filled.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Outputs d 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

Request Processing

Figure 11: Read Coils state diagram

6.2 02 (0x02) Read Discrete Inputs
This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a
remote device. The Request PDU specifies the starting address, i.e. the address of the first

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 13/50

input specified, and the number of inputs. In the PDU Discrete Inputs a re addressed starting
at zero. Therefore Discrete inputs numbered 1-16 are addressed as 0-15.
The discrete inputs in the response message are packed as one input per bit of the data field.
Status is indicated as 1= ON; 0= OFF. The LSB of the first data byte contains the input
addressed in the query. The other inputs follow toward the high order end of this byte, and
from low order to high order in subsequent bytes.
If the returned input quantity is not a multiple of eight, the remaining bits in the final d ata byte
will be padded with zeros (toward the high order end of the byte). The Byte Count field
specifies the quantity of complete bytes of data.

Request

Function code 1 Byte 0x02

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Inputs 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x02

Byte count 1 Byte N*

Input Status N* x 1 Byte
*N = Quantity of Inputs / 8 if the remainder is different of 0 � N = N+1

Error
Error code 1 Byte 0x82

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete inputs 197 – 218:

Request Response
Field Name (Hex) Field Name (Hex)
Function 02 Function 02
Starting Address Hi 00 Byte Count 03
Starting Address Lo C4 Inputs Status 204-197 AC
Quantity of Inputs Hi 00 Inputs Status 212-205 DB
Quantity of Inputs Lo 16 Inputs Status 218-213 35

The status of discrete inputs 204–197 is shown as the byte value AC hex, or binary 1010
1100. Input 204 is the MSB of this byte, and input 197 is the LSB.
The status of discrete inputs 218–213 is shown as the byte value 35 hex, or binary 0011 0101.
Input 218 is in the third bit position from the left, and input 213 is the LSB.

) Note: The two remaining bits (toward the high order end) are zero filled.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 14/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteInputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Inputs d 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Inputs == OK

ExceptionCode = 04

Request Processing

Figure 12: Read Discrete Inputs state diagram

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 15/50

6.3 03 (0x03) Read Holding Registers
This function code is used to read the contents of a contiguous block of holding registers in a
remote device. The Request PDU specifies the starting register address and the number of
registers. In the PDU Registers are addressed starting at zero. Therefore registers numbered
1-16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the
binary contents right justified within each byte. For each register, the first byte contains the
high order bits and the second contains the low order bits.

Request

Function code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Response

Function code 1 Byte 0x03
Byte count 1 Byte 2 x N*
Register value N* x 2 Bytes

*N = Quantity of Registers
Error

Error code 1 Byte 0x83
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read registers 108 – 110:

Request Response
Field Name (Hex) Field Name (Hex)
Function 03 Function 03
Starting Address Hi 00 Byte Count 06
Starting Address Lo 6B Register value Hi (108) 02
No. of Registers Hi 00 Register value Lo (108) 2B
No. of Registers Lo 03 Register value Hi (109) 00
 Register value Lo (109) 00
 Register value Hi (110) 00
 Register value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B hex, or 555 decimal.
The contents of registers 109–110 are 00 00 and 00 64 hex, or 0 and 100 decimal,
respectively.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 16/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Registers d 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 13: Read Holding Registers state diagram

6.4 04 (0x04) Read Input Registers
This function code is used to read from 1 to 125 contiguous input registers in a remote device.
The Request PDU specifies the starting register address and the number of registers. In the
PDU Registers are addressed starting at zero. Therefore input registers numbered 1-16 are
addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the
binary contents right justified within each byte. For each register, the first byte contains the
high order bits and the second contains the low order bits.
Request

Function code 1 Byte 0x04
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Input Registers 2 Bytes 0x0001 to 0x007D

Response

Function code 1 Byte 0x04
Byte count 1 Byte 2 x N*
Input Registers N* x 2 Bytes

*N = Quantity of Input Registers

Error

Error code 1 Byte 0x84
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read input register 9:

Request Response
Field Name (Hex) Field Name (Hex)
Function 04 Function 04
Starting Address Hi 00 Byte Count 02
Starting Address Lo 08 Input Reg. 9 Hi 00
Quantity of Input Reg. Hi 00 Input Reg. 9 Lo 0A

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 17/50

Quantity of Input Reg. Lo 01

The contents of input register 9 are shown as the two byte values of 00 0A hex, or 10 decimal.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadInputRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Registers d 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 14: Read Input Registers state diagram

6.5 05 (0x05) Write Single Coil
This function code is used to write a single output to either ON or OFF in a remote device.
The requested ON/OFF state is specified by a constant in the request data field. A value of FF
00 hex requests the output to be ON. A value of 00 00 requests it to be OFF. All other values
are illegal and will not affect the output.
The Request PDU specifies the address of the coil to be forced. Coils are addressed starting
at zero. Therefore coil numbered 1 is addressed as 0. The requested ON/OFF state is
specified by a constant in the Coil Value field. A value of 0XFF00 requests the coil to be ON.
A value of 0X0000 requests the coil to be off. All other values are illegal and will not affect the
coil.

The normal response is an echo of the request, returned after the coil state has been written.
Request

Function code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF
Output Value 2 Bytes 0x0000 or 0xFF00

Response

Function code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 18/50

Output Value 2 Bytes 0x0000 or 0xFF00

Error

Error code 1 Byte 0x85
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write Coil 173 ON:

Request Response
Field Name (Hex) Field Name (Hex)
Function 05 Function 05
Output Address Hi 00 Output Address Hi 00
Output Address Lo AC Output Address Lo AC
Output Value Hi FF Output Value Hi FF
Output Value Lo 00 Output Value Lo 00

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 19/50

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleOutput == OK

MB Server Sends mb_rsp

NO

YES

Output Value == 0x0000
OR 0xFF00

Function code
supported

Output Address == OK

Request Processing

Figure 15: Write Single Output state diagram

6.6 06 (0x06) Write Single Register
This function code is used to write a single holding register in a remote device.
The Request PDU specifies the address of the register to be written. Registers are addressed
starting at zero. Therefore register numbered 1 is addressed as 0.
The normal response is an echo of the request, returned after the register contents have been
written.

Request

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF
Register Value 2 Bytes 0x0000 to 0xFFFF

Error

Error code 1 Byte 0x86
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write register 2 to 00 03 hex:

Request Response
Field Name (Hex) Field Name (Hex)
Function 06 Function 06
Register Address Hi 00 Register Address Hi 00
Register Address Lo 01 Register Address Lo 01
Register Value Hi 00 Register Value Hi 00
Register Value Lo 03 Register Value Lo 03

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 20/50

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleRegister == OK

MB Server Sends mb_rsp

NO

YES

0x0000 d Register Value d 0xFFFF

Function code
supported

Register Address == OK

Request Processing

Figure 16: Write Single Register state diagram

6.7 07 (0x07) Read Exception Status (Serial Line only)
This function code is used to read the contents of eight Exception Status outputs in a remote
device.
The function provides a simple method for accessing this information, because the Exception
Output references are known (no output reference is needed in the function).
The normal response contains the status of the eight Exception Status outputs. The outputs
are packed into one data byte, with one bit per output. The status of the lowest output
reference is contained in the least significant bit of the byte.
The contents of the eight Exception Status outputs are device specific.
Request

Function code 1 Byte 0x07

Response

Function code 1 Byte 0x07
Output Data 1 Byte 0x00 to 0xFF

Error

Error code 1 Byte 0x87
Exception code 1 Byte 01 or 04

Here is an example of a request to read the exception status:

Request Response
Field Name (Hex) Field Name (Hex)
Function 07 Function 07
 Output Data 6D

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 21/50

In this example, the output data is 6D hex (0110 1101 binary). Left to right, the outputs are
OFF–ON–ON–OFF–ON–ON–OFF–ON. The status is shown from the highest to the lowest
addressed output.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

ReadExceptionStatus == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 17: Read Exception Status state diagram

6.8 08 (0x08) Diagnostics (Serial Line only)
MODBUS function code 08 provides a series of tests for checking the communication system
between a client device and a server, or for checking various internal error conditions within a
server.
The function uses a two–byte sub-function code field in the query to define the type of test to
be performed. The server echoes both the function code and sub-function code in a normal
response. Some of the diagnostics cause data to be returned from the remote device in the
data field of a normal response.
In general, issuing a diagnostic function to a remote device does not affect the running of the
user program in the remote device. User logic, like discrete and registers, is not accessed by
the diagnostics. Certain functions can optionally reset error counters in the remote device.
A server device can, however, be forced into ‘Listen Only Mode’ in which it will monitor the
messages on the communications system but not respond to them. This can affect the
outcome of your application program if it depends upon any fu rther exchange of data with the
remote device. Generally, the mode is forced to remove a malfunctioning remote device from
the communications system.

The following diagnostic functions are dedicated to serial line devices.

The normal response to the Return Query Data request is to loopback the same data. The
function code and sub-function codes are also echoed.
Request

Function code 1 Byte 0x08
Sub-function 2 Bytes
Data N x 2 Bytes

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 22/50

Response

Function code 1 Byte 0x08
Sub-function 2 Bytes
Data N x 2 Bytes

Error

Error code 1 Byte 0x88
Exception code 1 Byte 01 or 03 or 04

6.8.1 Sub-function codes supported by the serial line devices
Here the list of sub-function codes supported by the serial line devices. Each sub-function
code is then listed with an example of the data field contents that would apply for that
diagnostic.

Sub-function code Name
Hex Dec
00 00 Return Query Data
01 01 Restart Communications Option
02 02 Return Diagnostic Register
03 03 Change ASCII Input Delimiter
04 04 Force Listen Only Mode
 05.. 09 RESERVED
0A 10 Clear Counters and Diagnostic Register
0B 11 Return Bus Message Count
0C 12 Return Bus Communication Error Count
0D 13 Return Bus Exception Error Count
0E 14 Return Server Message Count
0F 15 Return Server No Response Count
10 16 Return Server NAK Count
11 17 Return Server Busy Count
12 18 Return Bus Character Overrun Count
13 19 RESERVED
14 20 Clear Overrun Counter and Flag
N.A. 21 ... 65535 RESERVED

00 Return Query Data
The data passed in the request data field is to be returned (looped back) in the response. The
entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)
00 00 Any Echo Request Data

01 Restart Communications Option
The remote device serial line port must be initialized and restarted, and all of its
communications event counters are cleared. If the port is currently in Listen Only Mode, no
response is returned. This function is the only one that brings the port out of Lis ten Only
Mode. If the port is not currently in Listen Only Mode, a normal response is returned. This
occurs before the restart is executed.
When the remote device receives the request, it attempts a restart and executes its power –up
confidence tests. Successful completion of the tests will bring the port online.
A request data field contents of FF 00 hex causes the port’s Communications Event Log to be
cleared also. Contents of 00 00 leave the log as it was prior to the restart.

Sub-function Data Field (Request) Data Field (Response)
00 01 00 00 Echo Request Data
00 01 FF 00 Echo Request Data

02 Return Diagnostic Register
The contents of the remote device’s 16–bit diagnostic register are returned in the response.

Sub-function Data Field (Request) Data Field (Response)
 00 02 00 00 Diagnostic Register Contents

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 23/50

03 Change ASCII Input Delimiter
The character ‘CHAR’ passed in the request data field becomes the end of message delimiter
for future messages (replacing the default LF character). This function is useful in cases of a
Line Feed is not required at the end of ASCII messages.

Sub-function Data Field (Request) Data Field (Response)
00 03 CHAR 00 Echo Request Data

04 Force Listen Only Mode
Forces the addressed remote device to its Listen Only Mode for MODBUS communications.
This isolates it from the other devices on the network, allowing them to continue
communicating without interruption from the addressed remote device. No response is
returned.
When the remote device enters its Listen Only Mode, all ac tive communication controls are
turned off. The Ready watchdog timer is allowed to expire, locking the controls off. While the
device is in this mode, any MODBUS messages addressed to it or broadcast are monitored,
but no actions will be taken and no responses will be sent.
The only function that will be processed after the mode is entered will be the Restart
Communications Option function (function code 8, sub-function 1).

Sub-function Data Field (Request) Data Field (Response)
00 04 00 00 No Response Returned

10 (0A Hex) Clear Counters and Diagnostic Register
The goal is to clear all counters and the diagnostic register. Counters are also cleared upon
power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0A 00 00 Echo Request Data

11 (0B Hex) Return Bus Message Count
The response data field returns the quantity of messages that the remote device has detected
on the communications system since its last restart, clear counters operation, or power –up.

Sub-function Data Field (Request) Data Field (Response)
00 0B 00 00 Total Message Count

12 (0C Hex) Return Bus Communication Error Count
The response data field returns the quantity of CRC errors encountered by the remote device
since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0C 00 00 CRC Error Count

13 (0D Hex) Return Bus Exception Error Count
The response data field returns the quantity of MODBUS exception responses returned by the
remote device since its last restart , clear counters operation, or power–up.
Exception responses are described and listed in section 7 .

Sub-function Data Field (Request) Data Field (Response)
00 0D 00 00 Exception Error Count

14 (0E Hex) Return Server Message Count
The response data field returns the quantity of messages addressed to the remote device, or
broadcast, that the remote device has processed since its last restart, clear counters
operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0E 00 00 Server Message Count

15 (0F Hex) Return Server No Response Count

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 24/50

The response data field returns the quantity of messages addressed to the remote device for
which it has returned no response (neither a normal response nor an exception response),
since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0F 00 00 Server No Response Count

16 (10 Hex) Return Server NAK Count
The response data field returns the quantity of messages addressed to the remote device for
which it returned a Negative Acknowledge (NAK) exception response, since its last restart,
clear counters operation, or power–up. Exception responses are described and listed in
section 7 .

Sub-function Data Field (Request) Data Field (Response)
00 10 00 00 Server NAK Count

17 (11 Hex) Return Server Busy Count
The response data field returns the quantity of messages addressed to the remote device for
which it returned a Server Device Busy exception response, since its last restart, clear
counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 11 00 00 Server Device Busy Count

18 (12 Hex) Return Bus Character Overrun Count
The response data field returns the quantity of messages addressed to the remote device that
it could not handle due to a character overrun condition, since its last restart, clear counters
operation, or power–up. A character overrun is caused by data characters arriving at the port
faster than they can be stored, or by the loss of a character due to a hardware malfunction.

Sub-function Data Field (Request) Data Field (Response)
00 12 00 00 Server Character Overrun Count

20 (14 Hex) Clear Overrun Counter and Flag
Clears the overrun error counter and reset the error flag.

Sub-function Data Field (Request) Data Field (Response)
00 14 00 00 Echo Request Data

6.8.2 Example and state diagram
Here is an example of a request to remote device to Return Query Data. This uses a sub -
function code of zero (00 00 hex in the two–byte field). The data to be returned is sent in the
two–byte data field (A5 37 hex).

Request Response
Field Name (Hex) Field Name (Hex)
Function 08 Function 08
Sub-function Hi 00 Sub-function Hi 00
Sub-function Lo 00 Sub-function Lo 00
Data Hi A5 Data Hi A5
Data Lo 37 Data Lo 37

The data fields in responses to other kinds of queries could contain error counts or other data
requested by the sub-function code.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 25/50

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

Diagnostic == OK

MB Server Sends mb_rsp

NO

YES

Function code supported
AND

Subfunction code supported

ExceptionCode = 03

Data Value == OK
NO

YES

Request Processing

Figure 18: Diagnostic state diagram

6.9 11 (0x0B) Get Comm Event Counter (Serial Line only)
This function code is used to get a status word and an event count from the remote device's
communication event counter.
By fetching the current count before and after a series of messages, a client can determine
whether the messages were handled normally by the remote device.
The device’s event counter is incremented once for each successful message completion. It is
not incremented for exception responses, poll commands, or fetch event counter commands.
The event counter can be reset by means of the Diagnostics function (code 08), with a sub-
function of Restart Communications Option (code 00 01) or Clear Counters and Diagnostic
Register (code 00 0A).
The normal response contains a two–byte status word, and a two–byte event count. The
status word will be all ones (FF FF hex) if a previously–issued program command is still being
processed by the remote device (a busy condition exists). Otherwise, the status word will be
all zeros.
Request

Function code 1 Byte 0x0B

Response

Function code 1 Byte 0x0B
Status 2 Bytes 0x0000 to 0xFFFF
Event Count 2 Bytes 0x0000 to 0xFFFF

Error

Error code 1 Byte 0x8B
Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event counter in remote device:

Request Response

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 26/50

Field Name (Hex) Field Name (Hex)
Function 0B Function 0B
 Status Hi FF
 Status Lo FF
 Event Count Hi 01
 Event Count Lo 08

In this example, the status word is FF FF hex, indicating that a program function is still in
progress in the remote device. The event count shows that 264 (01 08 hex) events have been
counted by the device.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

GetCommEventCounter == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 19: Get Comm Event Counter state diagram

6.10 12 (0x0C) Get Comm Event Log (Serial Line only)
This function code is used to get a status word, event count, message count, and a field of
event bytes from the remote device.
The status word and event counts are identical to that returned by the Get Communications
Event Counter function (11, 0B hex).
The message counter contains the quantity of messages processed by the remote device
since its last restart, clear counters operation, or power–up. This count is identical to that
returned by the Diagnostic function (code 08), sub-function Return Bus Message Count (code
11, 0B hex).
The event bytes field contains 0-64 bytes, with each byte corresponding to the status of one
MODBUS send or receive operation for the remote device. The remote device enters the
events into the field in chronological order. Byte 0 is the most recent event. Each new byte
flushes the oldest byte from the field.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 27/50

The normal response contains a two–byte status word field, a two–byte event count field, a
two–byte message count field, and a field containing 0-64 bytes of events. A byte count field
defines the total length of the data in these four fields.
Request

Function code 1 Byte 0x0C

Response

Function code 1 Byte 0x0C
Byte Count 1 Byte N*
Status 2 Bytes 0x0000 to 0xFFFF
Event Count 2 Bytes 0x0000 to 0xFFFF
Message Count 2 Bytes 0x0000 to 0xFFFF
Events (N-6) x 1 Byte

*N = Quantity of Events + 3 x 2 Bytes, (Length of Status, Event Count and Message Count)

Error

Error code 1 Byte 0x8C
Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event log in remote device:

Request Response
Field Name (Hex) Field Name (Hex)
Function 0C Function 0C
 Byte Count 08
 Status Hi 00
 Status Lo 00
 Event Count Hi 01
 Event Count Lo 08
 Message Count Hi 01
 Message Count Lo 21
 Event 0 20
 Event 1 00

In this example, the status word is 00 00 hex, indicating that the remote device is not
processing a program function. The event count shows that 264 (01 08 hex) events have been
counted by the remote device. The message count shows that 289 (01 21 hex) messages
have been processed.
The most recent communications event is shown in the Event 0 byte. Its content (20 hex)
show that the remote device has most recently entered the Listen Only Mode.
The previous event is shown in the Event 1 byte. Its contents (00 hex) show that the remote
device received a Communications Restart.

The layout of the response’s event bytes is described below.

What the Event Bytes Contain
An event byte returned by the Get Communications Event Log function can be any one of four
types. The type is defined by bit 7 (the high–order bit) in each byte. It may be further defined
by bit 6. This is explained below.

x Remote device MODBUS Receive Event
The remote device stores this type of event byte when a query message is received. It
is stored before the remote device processes the message. This event is defined by bit
7 set to logic ‘1’. The other bits will be set to a logic ‘1’ if the corresponding condition
is TRUE. The bit layout is:

Bit Contents
0 Not Used
1 Communication Error
2 Not Used
3 Not Used
4 Character Overrun

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 28/50

5 Currently in Listen Only Mode
6 Broadcast Received
7 1

x Remote device MODBUS Send Event
The remote device stores this type of event byte when it finishes processing a request
message. It is stored if the remote device returned a normal or exception response, or
no response. This event is defined by bit 7 set to a logic ‘0’, with bit 6 set to a ‘1’. The
other bits will be set to a logic ‘1’ if the corresponding condition is TRUE. The bit
layout is:

Bit Contents
0 Read Exception Sent (Exception Codes 1-3)
1 Server Abort Exception Sent (Exception Code 4)
2 Server Busy Exception Sent (Exception Codes 5-6)
3 Server Program NAK Exception Sent (Exception Code 7)
4 Write Timeout Error Occurred
5 Currently in Listen Only Mode
6 1
7 0

x Remote device Entered Listen Only Mode
The remote device stores this type of event byte when it enters the Listen Only Mode.
The event is defined by a content of 04 hex.

x Remote device Initiated Communication Restart
The remote device stores this type of event byte when its communications port is
restarted. The remote device can be restarted by the Diagnostics function (code 08),
with sub-function Restart Communications Option (code 00 01).
That function also places the remote device into a ‘Continue on Error’ or ‘Stop on
Error’ mode. If the remote device is placed into ‘Continue on Error’ mode, the event
byte is added to the existing event log. If the remote device is placed into ‘Stop on
Error’ mode, the byte is added to the log and the rest of the log is cleared to zeros.
The event is defined by a content of zero.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

GetCommEventLog == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 29/50

Figure 20: Get Comm Event Log state diagram

6.11 15 (0x0F) Write Multiple Coils
This function code is used to force each coil in a sequence of coils to either ON or OFF in a
remote device. The Request PDU specifies the coil references to be forced. Coils are
addressed starting at zero. Therefore coil numbered 1 is addressed as 0.
The requested ON/OFF states are specified by contents of the request data field. A logical ' 1'
in a bit position of the field requests the corresponding output to be ON. A logical '0' requests
it to be OFF.
The normal response returns the function code, starting address, and quantity of coils forced.
Request PDU

Function code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0001 to 0x07B0
Byte Count 1 Byte N*
Outputs Value N* x 1 Byte

*N = Quantity of Outputs / 8, if the remainder is different of 0 � N = N+1
Response PDU

Function code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Error

Error code 1 Byte 0x8F
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write a series of 10 coils starting at coil 20:
The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The
binary bits correspond to the outputs in the following way:
Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1
Output: 27 26 25 24 23 22 21 20 – – – – – – 29 28
The first byte transmitted (CD hex) addresses outputs 27-20, with the least significant bit
addressing the lowest output (20) in this set.
The next byte transmitted (01 hex) addresses outputs 29-28, with the least significant bit
addressing the lowest output (28) in this set. Unused bits in the last data byte should be zero–
filled.

Request Response
Field Name (Hex) Field Name (Hex)
Function 0F Function 0F
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 13 Starting Address Lo 13
Quantity of Outputs Hi 00 Quantity of Outputs Hi 00
Quantity of Outputs Lo 0A Quantity of Outputs Lo 0A
Byte Count 02
Outputs Value Hi CD
Outputs Value Lo 01

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 30/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Outputs d 0x07B0
AND

Byte Count = N*

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

*N = Quantity of Outputs / 8, if the
remainder is different of 0 � N = N+1

Request Processing

Figure 21: Write Multiple Outputs state diagram

6.12 16 (0x10) Write Multiple registers
This function code is used to write a block of contiguous registers (1 to 123 registers) in a
remote device.
The requested written values are specified in the request data field. Data is packed as two
bytes per register.
The normal response returns the function code, starting address, and quantity of registers
written.

Request

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0001 to 0x007B
Byte Count 1 Byte 2 x N*
Registers Value N* x 2 Bytes value

*N = Quantity of Registers
Response

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error

Error code 1 Byte 0x90

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex:

Request Response
Field Name (Hex) Field Name (Hex)
Function 10 Function 10
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 01 Starting Address Lo 01

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 31/50

Quantity of Registers Hi 00 Quantity of Registers Hi 00
Quantity of Registers Lo 02 Quantity of Registers Lo 02
Byte Count 04
Registers Value Hi 00
Registers Value Lo 0A
Registers Value Hi 01
Registers Value Lo 02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Registers d 0x007B
AND

Byte Count == Quantity of Registers x 2

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 22: Write Multiple Registers state diagram

6.13 17 (0x11) Report Server ID (Serial Line only)
This function code is used to read the description of the type, the current status, and other
information specific to a remote device.
The format of a normal response is shown in the following example. The data contents are
specific to each type of device.
Request

Function code 1 Byte 0x11
Response

Function code 1 Byte 0x11
Byte Count 1 Byte
Server ID device

specific

Run Indicator Status 1 Byte 0x00 = OFF, 0xFF = ON
Additional Data

Error
Error code 1 Byte 0x91
Exception code 1 Byte 01 or 04

Here is an example of a request to report the ID and status:

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 32/50

Request Response
Field Name (Hex) Field Name (Hex)
Function 11 Function 11
 Byte Count Device

Specific
 Server ID Device

Specific
 Run Indicator Status 0x00 or 0xFF
 Additional Data Device

Specific

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

ReportSlaveID == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 23: Report server ID state diagram

6.14 20 (0x14) Read File Record
This function code is used to perform a file record read. All Request Data Lengths are
provided in terms of number of bytes and all Record Lengths are provided in terms of
registers.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999
decimal or 0X0000 to 0X270F. For example, record 12 is addressed as 12.
The function can read multiple groups of references. The groups can be separating (non -
contiguous), but the references within each group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes:

The reference type: 1 byte (must be specified as 6)
The File number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be read: 2 bytes.

The quantity of registers to be read, combined with all other fields in the expected response,
must not exceed the allowable length of the MODBUS PDU : 253 bytes.
The normal response is a series of ‘sub-responses’, one for each ‘sub-request’. The byte
count field is the total combined count of bytes in all ‘sub -responses’. In addition, each ‘sub-
response’ contains a field that shows its own byte count.
Request

Function code 1 Byte 0x14
Byte Count 1 Byte 0x07 to 0xF5 bytes
Sub-Req. x, Reference Type 1 Byte 06
Sub-Req. x, File Number 2 Bytes 0x0001 to 0xFFFF

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 33/50

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F
Sub-Req. x, Record Length 2 Bytes N
Sub-Req. x+1, ...

Response
Function code 1 Byte 0x14
Resp. data Length 1 Byte 0x07 to 0xF5
Sub-Req. x, File Resp. length 1 Byte 0x07 to 0xF5
Sub-Req. x, Reference Type 1 Byte 6
Sub-Req. x, Record Data N x 2 Bytes
Sub-Req. x+1, ...

Error
Error code 1 Byte 0x94
Exception code 1 Byte 01 or 02 or 03 or 04 or

08

While it is allowed for the File Number to be in the range 1 to 0xFFFF, it should be noted that
interoperability with legacy equipment may be compromised if the File Number is greater than
10 (0x0A).
Here is an example of a request to read two groups of references from remote device:

� Group 1 consists of two registers from file 4, starting at register 1 (address 0001).
� Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Request Response
Field Name (Hex) Field Name (Hex)
Function 14 Function 14
Byte Count 0E Resp. Data length 0C
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, File resp. length 05
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, Register.Data Hi 0D
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Register.DataLo FE
Sub-Req. 1, Record number Lo 01 Sub-Req. 1, Register.Data Hi 00
Sub-Req. 1, Record Length Hi 00 Sub-Req. 1, Register.DataLo 20
Sub-Req. 1, Record Length Lo 02 Sub-Req. 2, File resp. length 05
Sub-Req. 2, Ref. Type 06 Sub-Req. 2, Ref. Type 06
Sub-Req. 2, File Number Hi 00 Sub-Req. 2, Register.Data H 33
Sub-Req. 2, File Number Lo 03 Sub-Req. 2, Register.DataLo CD
Sub-Req. 2, Record number Hi 00 Sub-Req. 2, Register.Data Hi 00
Sub-Req. 2, Record number Lo 09 Sub-Req. 2, Register.DataLo 40
Sub-Req. 2, Record Length Hi 00
Sub-Req. 2, Record Length Lo 02

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 34/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

ReadGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 d Byte Count d 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Record number == OK
AND

Starting Address + Register length == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 24: Read File Record state diagram

6.15 21 (0x15) Write File Record
This function code is used to perform a file record write. All Request Data Lengths are
provided in terms of number of bytes and all Record Lengths are provided in terms of the
number of 16-bit words.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999
decimal or 0X0000 to 0X270F. For example, record 12 is addressed as 12.
The function can write multiple groups of references. The groups can be separate, i.e. n on–
contiguous, but the references within each group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes plus the data:

The reference type: 1 byte (must be specified as 6)
The file number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be written: 2 bytes
The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the request, must not
exceed the allowable length of the MODBUS PDU : 253bytes.
The normal response is an echo of the request.
Request

Function code 1 Byte 0x15
Request data length 1 Byte 0x09 to 0xFB
Sub-Req. x, Reference Type 1 Byte 06
Sub-Req. x, File Number 2 Bytes 0x0001 to 0xFFFF
Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 35/50

Sub-Req. x, Record length 2 Bytes N
Sub-Req. x, Record data N x 2 Bytes
Sub-Req. x+1, ...

Response

Function code 1 Byte 0x15

Response Data length 1 Byte 0x09 to 0xFB

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0001 to 0xFFFF

Sub-Req. x, Record number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Record length 2 Bytes N

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error

Error code 1 Byte 0x95

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

While it is allowed for the File Number to be in the range 1 to 0xFFFF, it should be noted that
interoperability with legacy equipment may be compromised if the File Number is greater than
10 (0x0A).
Here is an example of a request to write one group of references into remote device:
y The group consists of three registers in file 4, starting at register 7 (address 0007).

Request Response
Field Name (Hex) Field Name (Hex)
Function 15 Function 15
Request Data length 0D Request Data length 0D
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, File Number Hi 00
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, File Number Lo 04
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record number Hi 00
Sub-Req. 1, Record number Lo 07 Sub-Req. 1, Record number

Lo
07

Sub-Req. 1, Record length Hi 00 Sub-Req. 1, Record length Hi 00
Sub-Req. 1, Record length Lo 03 Sub-Req. 1, Record length Lo 03
Sub-Req. 1, Register Data Hi 06 Sub-Req. 1, Register Data Hi 06
Sub-Req. 1, Register Data Lo AF Sub-Req. 1, Register Data Lo AF
Sub-Req. 1, Register Data Hi 04 Sub-Req. 1, Register Data Hi 04
Sub-Req. 1, Register Data Lo BE Sub-Req. 1, Register Data Lo BE
Sub-Req. 1, Register Data Hi 10 Sub-Req. 1, Register Data Hi 10
Sub-Req. 1, Register Data Lo 0D Sub-Req. 1, Register Data Lo 0D

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 36/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

WriteGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 d Byte Count d 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Record number == OK
AND

Starting Address + Register length == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 25: Write File Record state diagram

6.16 22 (0x16) Mask Write Register
This function code is used to modify the contents of a specified holding register using a
combination of an AND mask, an OR mask, and the register's current contents. The function
can be used to set or clear individual bits in the register.
The request specifies the holding register to be written, the data to be used as the AND mask,
and the data to be used as the OR mask. Registers are addressed starting at zero. Therefore
registers 1-16 are addressed as 0-15.
The function’s algorithm is:
Result = (Current Contents AND And_Mask) OR (Or_Mask AND (NOT And_Mask))
For example:

 Hex Binary
Current Contents= 12 0001 0010
And_Mask = F2 1111 0010
Or_Mask = 25 0010 0101

(NOT And_Mask)= 0D 0000 1101

Result = 17 0001 0111

) Note:

y If the Or_Mask value is zero, the result is simply the logical ANDing of the current contents and
And_Mask. If the And_Mask value is zero, the result is equal to the Or_Mask value.

y The contents of the register can be read with the Read Holding Registers function (function code 03).
They could, however, be changed subsequently as the controller scans its user logic program.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 37/50

The normal response is an echo of the request. The response is returned after the register
has been written.
Request

Function code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF
And_Mask 2 Bytes 0x0000 to 0xFFFF
Or_Mask 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF
And_Mask 2 Bytes 0x0000 to 0xFFFF
Or_Mask 2 Bytes 0x0000 to 0xFFFF

Error

Error code 1 Byte 0x96
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a Mask Write to register 5 in remote device, using the above mask
values.

Request Response
Field Name (Hex) Field Name (Hex)
Function 16 Function 16
Reference address Hi 00 Reference address Hi 00
Reference address Lo 04 Reference address Lo 04
And_Mask Hi 00 And_Mask Hi 00
And_Mask Lo F2 And_Mask Lo F2
Or_Mask Hi 00 Or_Mask Hi 00
Or_Mask Lo 25 Or_Mask Lo 25

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO
ExceptionCode = 02

YES

NO

ExceptionCode = 03

YES

ENTRY

MaskWriteRegister == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

ExceptionCode = 04

Request Processing

Reference Address == OK

AND_Mask == OK
AND

OR_Mask == OK

Figure 26: Mask Write Holding Register state diagram

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 38/50

6.17 23 (0x17) Read/Write Multiple registers
This function code performs a combination of one read operation and one write operation in a
single MODBUS transaction. The write operation is performed before the read.
Holding registers are addressed starting at zero. Therefore holding registers 1 -16 are
addressed in the PDU as 0-15.
The request specifies the starting address and number of holding registers to be read as well
as the starting address, number of holding registers, and the data to be written. The byte
count specifies the number of bytes to follow in the write data field.
The normal response contains the data from the group of registers that were read. The byte
count field specifies the quantity of bytes to follow in the read data field.

Request

Function code 1 Byte 0x17
Read Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Read 2 Bytes 0x0001 to 0x007D
Write Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity to Write 2 Bytes 0x0001 to 0X0079
Write Byte Count 1 Byte 2 x N*
Write Registers Value N*x 2 Bytes

*N = Quantity to Write

Response

Function code 1 Byte 0x17
Byte Count 1 Byte 2 x N'*
Read Registers value N'* x 2 Bytes

*N' = Quantity to Read

Error

Error code 1 Byte 0x97
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read six registers starting at register 4, and to write three
registers starting at register 15:

Request Response
Field Name (Hex) Field Name (Hex)
Function 17 Function 17
Read Starting Address Hi 00 Byte Count 0C
Read Starting Address Lo 03 Read Registers value Hi 00
Quantity to Read Hi 00 Read Registers value Lo FE
Quantity to Read Lo 06 Read Registers value Hi 0A
Write Starting Address Hi 00 Read Registers value Lo CD
Write Starting address Lo 0E Read Registers value Hi 00
Quantity to Write Hi 00 Read Registers value Lo 01
Quantity to Write Lo 03 Read Registers value Hi 00
Write Byte Count 06 Read Registers value Lo 03
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo 0D
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo FF
Write Registers Value Hi 00
Write Registers Value Lo FF

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 39/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

Read/WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 d Quantity of Read d 0x007D
AND

0x0001 d Quantity of Write d 0x0079
AND

Byte Count == Quantity of Write x 2

Function code
supported

 Read Starting Address == OK
AND

Read Starting Address + Quantity of Read == OK
AND

Write Starting Address == OK
AND

Write Starting Address + Quantity of Write == OK

ExceptionCode = 04

Request Processing
Write operation before read operation

Figure 27: Read/Write Multiple Registers state diagram

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 40/50

6.18 24 (0x18) Read FIFO Queue
This function code allows to read the contents of a First-In-First-Out (FIFO) queue of register
in a remote device. The function returns a count of the registers in the queue, followed by the
queued data. Up to 32 registers can be read: the count, plus up to 31 queued data registers.
The queue count register is returned first, followed by the queued data registers.
The function reads the queue contents, but does not clear them.
In a normal response, the byte count shows the quantity of bytes to follow, including the
queue count bytes and value register bytes (but not including the error check field).
The queue count is the quantity of data registers in the queue (not including the count
register).
If the queue count exceeds 31, an exception response is returned with an error code of 03
(Illegal Data Value).
Request

Function code 1 Byte 0x18
FIFO Pointer Address 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x18
Byte Count 2 Bytes
FIFO Count 2 Bytes d 31
FIFO Value Register N* x 2 Bytes

*N = FIFO Count
Error

Error code 1 Byte 0x98
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of Read FIFO Queue request to remote device. The request is to read the
queue starting at the pointer register 1246 (0x04DE):

Request Response
Field Name (Hex) Field Name (Hex)
Function 18 Function 18
FIFO Pointer Address Hi 04 Byte Count Hi 00
FIFO Pointer Address Lo DE Byte Count Lo 06

 FIFO Count Hi 00
 FIFO Count Lo 02
 FIFO Value Register Hi 01
 FIFO Value Register Lo B8
 FIFO Value Register Hi 12
 FIFO Value Register Lo 84

In this example, the FIFO pointer register (1246 in the request) is returned with a queue count
of 2. The two data registers follow the queue count. These are:
1247 (contents 440 decimal -- 0x01B8); and 1248 (contents 4740 -- 0x1284).

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 41/50

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 03
YES

NO

ExceptionCode = 02
YES

ENTRY

ReadFIFOQueue == OK

MB Server Sends mb_rsp

NO

YES

0x0000 d FIFO Pointer Address d 0xFFFF

Function code
supported

ExceptionCode = 04

FIFO Count d 31

Request Processing

Figure 28: Read FIFO Queue state diagram

6.19 43 (0x2B) Encapsulated Interface Transport
Informative Note: The user is asked to refer to Annex A (Informative) MODBUS RESERVED
FUNCTION CODES, SUBCODES AND MEI TYPES.

Function Code 43 and its MEI Type 14 for Device Identification is one of two Encapsulated
Interface Transport currently available in this Specification. The following function codes and
MEI Types shall not be part of this published Specification and these function codes and MEI
Types are specifically reserved: 43/0-12 and 43/15-255.

The MODBUS Encapsulated Interface (MEI)Transport is a mechanism for tunneling service
requests and method invocations, as well as their returns, inside MODBUS PDUs .
The primary feature of the MEI Transport is the encapsulation of method invocations or
service requests that are part of a defined interface as well as method invocation returns or
service responses.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 42/50

Figure 29: MODBUS encapsulated Interface Transport

The Network Interface can be any communication stack used to send MODBUS PDUs, such
as TCP/IP, or serial line.
A MEI Type is a MODBUS Assigned Number and therefore will be unique, the value between
0 to 255 are Reserved according to Annex A (Informative) except for MEI Type 13 and MEI
Type 14.
The MEI Type is used by MEI Transport implementations to dispatch a method invocation to
the indicated interface.
Since the MEI Transport service is interface agnostic, any specific behav ior or policy required
by the interface must be provided by the interface, e.g. MEI transaction processing, MEI
interface error handling, etc.

Request

Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0D or 0x0E
MEI type specific data n Bytes

* MEI = MODBUS Encapsulated Interface
Response

Function code 1 Byte 0x2B
MEI Type 1 byte echo of MEI Type in

Request
MEI type specific data n Bytes

Error

Function code 1 Byte 0xAB :
Fc 0x2B + 0x80

Exception code 1 Byte 01 or 02 or 03 or 04

As an example see Read device identification request.

6.20 43 / 13 (0x2B / 0x0D) CANopen General Reference Request and Response PDU
The CANopen General reference Command is an encapsulation of the services that will be
used to access (read from or write to) the entries of a CAN-Open Device Object Dictionary as
well as controlling and monitoring the CANopen system, and devices.

The MEI Type 13 (0x0D) is a MODBUS Assigned Number licensed to CiA for the CANopen
General Reference.

The system is intended to work within the limitations of existing MODBUS networks.
Therefore, the information needed to query or modify the object dictionaries in the system is

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 43/50

mapped into the format of a MODBUS message. The PDU will have the 253 Byte limitation in
both the Request and the Response message.

Informative: Please refer to Annex B for a reference to a specification that provides
information on MEI Type 13.

6.21 43 / 14 (0x2B / 0x0E) Read Device Identification
This function code allows reading the identification and additional information relative to the
physical and functional description of a remote device, only.
The Read Device Identification interface is modeled as an address space composed of a set
of addressable data elements. The data elements are called objects and an object Id identifies
them.
The interface consists of 3 categories of objects :

� Basic Device Identification. All objects of this category are mandatory : VendorName,
Product code, and revision number.

� Regular Device Identification. In addition to Basic data objects, the device provides
additional and optional identification and description data objects. All of the objects of
this category are defined in the standard but their implementation is optional .

� Extended Device Identification. In addition to regular data objects, the device provides
additional and optional identification and description private data about the physical
device itself. All of these data are device dependent.

Object

Id
Object Name / Description Type M/O category

0x00 VendorName ASCII String Mandatory Basic
 0x01 ProductCode ASCII String Mandatory

0x02 MajorMinorRevision ASCII String Mandatory
0x03 VendorUrl ASCII String Optional Regular
0x04 ProductName ASCII String Optional
0x05 ModelName ASCII String Optional
0x06 UserApplicationName ASCII String Optional
0x07
…

0x7F

Reserved

 Optional

0x80
…

0xFF

Private objects may be optionally
defined.
The range [0x80 – 0xFF] is Product
dependant.

device
dependant

Optional Extended

Request

Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0E
Read Device ID code 1 Byte 01 / 02 / 03 / 04
Object Id 1 Byte 0x00 to 0xFF

* MEI = MODBUS Encapsulated Interface
Response

Function code 1 Byte 0x2B
MEI Type 1 byte 0x0E
Read Device ID code 1 Byte 01 / 02 / 03 / 04
Conformity level 1 Byte 0x01 or 0x02 or 0x03 or

0x81 or 0x82 or 0x83
More Follows 1 Byte 00 / FF
Next Object Id 1 Byte Object ID number
Number of objects 1 Byte
List Of

Object ID 1 Byte
Object length 1 Byte
Object Value Object length Depending on the object ID

Error

Function code 1 Byte 0xAB :
Fc 0x2B + 0x80

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 44/50

Exception code 1 Byte 01 or 02 or 03 or 04

Request parameters description :
A MODBUS Encapsulated Interface assigned number 14 identifies the Read identification
request.
The parameter " Read Device ID code " allows to define four access types :

01: request to get the basic device identification (stream access)
02: request to get the regular device identification (stream access)
03: request to get the extended device identification (stream access)
04: request to get one specific identification object (individual access)

An exception code 03 is sent back in the response if the Read device ID code is illegal.
In case of a response that does not fit into a single response, several transactions
(request/response) must be done. The Object Id byte gives the identification of the first
object to obtain. For the first transaction, the client must set the Object Id to 0 to obtain
the beginning of the device identification data. For the following transactions, the client
must set the Object Id to the value returned by the server in its previous response.
Remark : An object is indivisible, therefore any object must have a size consistent with
the size of transaction response.

If the Object Id does not match any known object, the server responds as if object 0 were
pointed out (restart at the beginning).

 In case of an individual access: ReadDevId code 04 , the Object Id in the request gives
the identification of the object to obtain, and if the Object Id doesn't match to any known
object, the server returns an exception response with exception code = 02 (Illegal data
address).
If the server device is asked for a description level (readDevice Code)higher that its
conformity level , It must respond in accordance with its actual conformity level.

Response parameter description :
Function code : Function code 43 (decimal) 0x2B (hex)
MEI Type 14 (0x0E) MEI Type assigned number for Device Identification

Interface
ReadDevId code : Same as request ReadDevId code : 01, 02, 03 or 04
Conformity Level Identification conformity level of the device and type of supported

access
0x01: basic identification (stream access only)
0x02: regular identification (stream access only)
0x03: extended identification (stream access only)
0x81: basic identification (stream access and individual access)
0x82: regular identification (stream access and individual access)
0x83: extended identification(stream access and individual
access)

More Follows In case of ReadDevId codes 01, 02 or 03 (stream access),
If the identification data doesn't fit into a single response, several
request/response transactions may be required.
0x00 : no more Object are available
0xFF : other identification Object are available and further
MODBUS transactions are required
In case of ReadDevId code 04 (individual access),
this field must be set to 00.

Next Object Id If "MoreFollows = FF", identification of the next Object to be
asked for.
If "MoreFollows = 00", must be set to 00 (useless)

Number Of Objects Number of identification Object returned in the response
(for an individual access, Number Of Objects = 1)

Object0.Id Identification of the first Object returned in the PDU (stream
access) or the requested Object (individual access)

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 45/50

Object0.Length Length of the first Object in byte
Object0.Value Value of the first Object (Object0.Length bytes)
…
ObjectN.Id Identification of the last Object (within the response)
ObjectN.Length Length of the last Object in byte
ObjectN.Value Value of the last Object (ObjectN.Length bytes)

Example of a Read Device Identification request for "Basic device identification" : In this
example all information are sent in one response PDU.

Request Response
Field Name Value Field Name Value
Function 2B Function 2B

 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 0D
 Object Value " Product code XX"
 Object Id 02
 Object Length 05
 Object Value "V2.11"

In case of a device that required several transactions to send the response the following
transactions is intiated.
First transaction :

Request Response
Field Name Value Field Name Value
Function 2B Function 2B

 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows FF
 NextObjectId 02
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 1C
 Object Value " Product code

XXXXXXXXXXXXXXXX"

Second transaction :

Request Response
Field Name Value Field Name Value
Function 2B Function 2B

 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 02 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 02
 Object Length 05
 Object Value "V2.11"

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 46/50

NO
YES

MB Server Sends
mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptiCode = 01

YES

NO

More follows = FF
Next Object ID = XX

NO

Except.Code = 02 YES

ENTRY

MB Server Sends mb_rsp

NO

Object Id OK

Function code
supported

Segmentation required

Request Processing

More follows = 00
Next Object ID = 00

Read deviceId Code OK

Except. Code =03

Figure 30: Read Device Identification state diagram

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 47/50

7 MODBUS Exception Responses

When a client device sends a request to a server device it expects a normal response. One
of four possible events can occur from the client’s query:

x If the server device receives the request without a communication error, and can
handle the query normally, it returns a normal response.

x If the server does not receive the request due to a communication error, no response
is returned. The client program will eventually process a timeout condition for the
request.

x If the server receives the request, but detects a communication error (parity, LRC,
CRC, ...), no response is returned. The client program will eventually process a
timeout condition for the request.

x If the server receives the request without a communication error, but cannot handl e it
(for example, if the request is to read a non–existent output or register), the server
will return an exception response informing the client of the nature of the error.

The exception response message has two fields that differentiate it from a nor mal response:
Function Code Field: In a normal response, the server echoes the function code of the
original request in the function code field of the response. All function codes have a most–
significant bit (MSB) of 0 (their values are all below 80 hexadecimal). In an exception
response, the server sets the MSB of the function code to 1. This makes the function code
value in an exception response exactly 80 hexadecimal higher than the value would be for a
normal response.
With the function code’s MSB set, the client's application program can recognize the
exception response and can examine the data field for the exception code.
Data Field: In a normal response, the server may return data or statistics in the data field
(any information that was requested in the request). In an exception response, the server
returns an exception code in the data field. This defines the server condition that caused the
exception.

Example of a client request and server exception response

Request Response
Field Name (Hex) Field Name (Hex)
Function 01 Function 81
Starting Address Hi 04 Exception Code 02
Starting Address Lo A1
Quantity of Outputs Hi 00
Quantity of Outputs Lo 01

In this example, the client addresses a request to server device. The function code (01) is for
a Read Output Status operation. It requests the status of the output at address 1185 (04A1
hex). Note that only that one output is to be read, as specified by the number of outputs field
(0001).
If the output address is non–existent in the server device, the server will return the exception
response with the exception code shown (02). This specifies an illegal data address for the
server.

A listing of exception codes begins on the next page.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 48/50

MODBUS Exception Codes
Code Name Meaning
01 ILLEGAL FUNCTION The function code received in the query is not an

allowable action for the server. This may be
because the function code is only applicable to
newer devices, and was not implemented in the
unit selected. It could also indicate that the server
is in the wrong state to process a request of this
type, for example because it is unconfigured and
is being asked to return register values.

02 ILLEGAL DATA ADDRESS The data address received in the query is not an
allowable address for the server. More
specifically, the combination of reference number
and transfer length is invalid. For a controller with
100 registers, the PDU addresses the first register
as 0, and the last one as 99. If a request is
submitted with a starting register address of 96
and a quantity of registers of 4, then this request
will successfully operate (address-wise at least)
on registers 96, 97, 98, 99. If a request is
submitted with a starting register address of 96
and a quantity of registers of 5, then this request
will fail with Exception Code 0x02 “Illegal Data
Address” since it attempts to operate on registers
96, 97, 98, 99 and 100, and there is no register
with address 100.

03 ILLEGAL DATA VALUE A value contained in the query data field is not an
allowable value for server. This indicates a fault in
the structure of the remainder of a complex
request, such as that the implied length is
incorrect. It specifically does NOT mean that a
data item submitted for storage in a register has a
value outside the expectation of the application
program, since the MODBUS protocol is unaware
of the significance of any particular value of any
particular register.

04 SERVER DEVICE FAILURE An unrecoverable error occurred while the server
was attempting to perform the requested action.

05 ACKNOWLEDGE Specialized use in conjunction with programming
commands.
The server has accepted the request and is
processing it, but a long duration of time will be
required to do so. This response is returned to
prevent a timeout error from occurring in the
client. The client can next issue a Poll Program
Complete message to determine if processing is
completed.

06 SERVER DEVICE BUSY Specialized use in conjunction with programming
commands.
The server is engaged in processing a long–
duration program command. The client should
retransmit the message later when the server is
free.

08 MEMORY PARITY ERROR Specialized use in conjunction with function codes
20 and 21 and reference type 6, to indicate that
the extended file area failed to pass a consistency
check.
The server attempted to read record file, but
detected a parity error in the memory. The client
can retry the request, but service may be required

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 49/50

on the server device.
0A GATEWAY PATH UNAVAILABLE Specialized use in conjunction with gateways,

indicates that the gateway was unable to allocate
an internal communication path from the input port
to the output port for processing the request.
Usually means that the gateway is misconfigured
or overloaded.

0B GATEWAY TARGET DEVICE
FAILED TO RESPOND

Specialized use in conjunction with gateways,
indicates that no response was obtained from the
target device. Usually means that the device is not
present on the network.

MODBUS Application Protocol Specification V1.1b3 Modbus

April 26, 2012 http://www.modbus.org 50/50

Annex A (Informative): MODBUS RESERVED FUNCTION CODES, SUBCODES
AND MEI TYPES

The following function codes and subcodes shall not be part of this published Specification
and these function codes and subcodes are specifically reserved. The format is function
code/subcode or just function code where all the subcodes (0-255) are reserved: 8/19; 8/21-
65535, 9, 10, 13, 14, 41, 42, 90, 91, 125, 126 and 127.

Function Code 43 and its MEI Type 14 for Device Identification and MEI Type 13 for
CANopen General Reference Request and Response PDU are the currently available
Encapsulated Interface Transports in this Specification.

The following function codes and MEI Types shall not be part of this published Specification
and these function codes and MEI Types are specifically reserved: 43/0 -12 and 43/15-255.
In this Specification, a User Defined Function code having the same or similar result as the
Encapsulated Interface Transport is not supported.

MODBUS is a registered trademark of Schneider Automation Inc.

Annex B (Informative): CANOPEN GENERAL REFERENCE COMMAND

Please refer to the MODBUS website or the CiA (CAN in Automation) website for a copy and
terms of use that cover Function Code 43 MEI Type 13.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 1/46

MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE
V1.0b

CONTENTS

1 INTRODUCTION ... 2
1.1 OBJECTIVES ... 2
1.2 CLIENT / SERVER MODEL... 2
1.3 REFERENCE DOCUMENTS ... 3

2 ABBREVIATIONS .. 3
3 CONTEXT ... 3

3.1 PROTOCOL DESCRIPTION ... 3
3.1.1 General communication architecture ... 3
3.1.2 MODBUS On TCP/IP Application Data Unit ... 4
3.1.3 MBAP Header description ... 5

3.2 MODBUS FUNCTIONS CODES DESCRIPTION .. 6
4 FUNCTIONAL DESCRIPTION.. 7

4.1 MODBUS COMPONENT ARCHITECTURE MODEL... 7
4.2 TCP CONNECTION MANAGEMENT ..10

4.2.1 Connections management Module..10
4.2.2 Impact of Operating Modes on the TCP Connection..................................13
4.2.3 Access Control Module ..14

4.3 USE of TCP/IP STACK ..14
4.3.1 Use of BSD Socket interface ..15
4.3.2 TCP layer parameterization ...18
4.3.3 IP layer parameterization ...19

4.4 COMMUNICATION APPLICATION LAYER ...20
4.4.1 MODBUS Client ...20
4.4.2 MODBUS Server ..26

5 IMPLEMENTATION GUIDELINE ...32
5.1 OBJECT MODEL DIAGRAM ..32

5.1.1 TCP management package ..33
5.1.2 Configuration layer package...35
5.1.3 Communication layer package..36
5.1.4 Interface classes..37

5.2 IMPLEMENTATION CLASS DIAGRAM...37
5.3 SEQUENCE DIAGRAMS..39
5.4 CLASSES AND METHODS DESCRIPTION ..42

5.4.1 MODBUS Server Class ..42
5.4.2 MODBUS Client Class..43
5.4.3 Interface Classes ...44
5.4.4 Connexion Management class..45

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

1 INTRODUCTION

1.1 OBJECTIVES

The objective of this document is to present the MODBUS messaging service over
TCP/IP , in order to provide reference information that helps software developers to
implement this service. The encoding of the MODBUS function codes is not described
in this document, for this information please read the MODBUS Application Protocol
Specification [1].

This document gives accurate and comprehensive description of a MODBUS messaging
service implementation. Its purpose is to facilitate the interoperability between the
devices using the MODBUS messaging service.

This document comprises mainly three parts:
x An overview of the MODBUS over TCP/IP protocol
x A functional description of a MODBUS client, server and gateway

implementation.
x An implementation guideline that proposes the object model of an MODBUS

implementation example.

1.2 CLIENT / SERVER MODEL
The MODBUS messaging service provides a Client/Server communication between
devices connected on an Ethernet TCP/IP network.
This client / server model is based on four type of messages:

x MODBUS Request,
x MODBUS Confirmation,
x MODBUS Indication,
x MODBUS Response

MODBUS Client MODBUS Server

Request Indication

ResponseConfirmation

A MODBUS Request is the message sent on the network by the Client to initiate a
transaction,

A MODBUS Indication is the Request message received on the Server side,

A MODBUS Response is the Response message sent by the Server,

A MODBUS Confirmation is the Response Message received on the Client side

The MODBUS messaging services (Client / Server Model) are used for real time
information exchange:

x between two device applications,
x between device application and other device,
x between HMI/SCADA applications and devices,
x between a PC and a device program providing on line services.

October 24, 2006 http://www.Modbus-IDA.org 2/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 3/46

-

1.3 REFERENCE DOCUMENTS
This section gives a list of documents that are interesting to read before this one:

 [1] MODBUS Application Protocol Specification V1.1a.
 [2] RFC 1122 Requirements for Internet Hosts -- Communication Layers

2 ABBREVIATIONS

ADU Application Data Unit
IETF Internet Engineering Task Force
IP Internet Protocol
MAC Medium Access Control
MB MODBUS
MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transport Control Protocol
BSD Berkeley Software Distribution
MSL Maximum Segment Lifetime

3 CONTEXT

3.1 PROTOCOL DESCRIPTION

3.1.1 General communication architecture

A communicating system over MODBUS TCP/IP may include different types of device:

x A MODBUS TCP/IP Client and Server devices connected to a TCP/IP network

x The Interconnection devices like bridge, router or gateway for interconnection
between the TCP/IP network and a serial line sub-network which permit
connections of MODBUS Serial line Client and Server end devices.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

MODBU
S Client
TCP/IP

MODBU
S Server
TCP/IP

MODBU
S Server
TCP/IP

MODBUS
Server

Serial Line

MODBUS
Server

Serial Line

MODBUS
Client

Serial Line

MODBU
S Client
TCP/IP

MODBUS

Client
TCP/IP

Server TCP/IP
gateway

MODBUS Serial

Figure 1: MODBUS TCP/IP communication architecture

The MODBUS protocol defines a simple Protocol Data Unit (PDU) independent of the
underlying communication layers. The mapping of MODBUS protocol on specific buses
or networks can introduce some additional fields on the Application Data Unit (ADU).

Additional address Function code Data Error check

ADU

PDU

Figure 2: General MODBUS frame

The client that initiates a MODBUS transaction builds the MODBUS Application Data
Unit. The function code indicates to the server which kind of action to perform.

3.1.2 MODBUS On TCP/IP Application Data Unit
This section describes the encapsulation of a MODBUS request or response when it is
carried on a MODBUS TCP/IP network.

Function code DataMBAP Header

PDU

MODBUS TCP/IP ADU

Figure 3: MODBUS request/response over TCP/IP

A dedicated header is used on TCP/IP to identify the MODBUS Application Data Unit. It
is called the MBAP header (MODBUS Application Protocol header).

October 24, 2006 http://www.Modbus-IDA.org 4/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 5/46

This header provides some differences compared to the MODBUS RTU application data
unit used on serial line:

� The MODBUS ‘slave address’ field usually used on MODBUS Serial Line is
replaced by a single byte ‘Unit Identifier’ within the MBAP Header. The
‘Unit Identifier’ is used to communicate via devices such as bridges,
routers and gateways that use a single IP address to support multiple
independent MODBUS end units.

� All MODBUS requests and responses are designed in such a way that the
recipient can verify that a message is finished. For function codes where
the MODBUS PDU has a fixed length, the function code alone is sufficient.
For function codes carrying a variable amount of data in the request or
response, the data field includes a byte count.

� When MODBUS is carried over TCP, additional length information is
carried in the MBAP header to allow the recipient to recognize message
boundaries even if the message has been split into multiple packets for
transmission. The existence of explicit and implicit length rules, and use of
a CRC-32 error check code (on Ethernet) results in an infinitesimal chance
of undetected corruption to a request or response message.

3.1.3 MBAP Header description

The MBAP Header contains the following fields:

Fields Length Description - Client Server

Transaction
Identifier

2 Bytes Identification of a
MODBUS Request /
Response transaction.

Initialized by the
client

Recopied by the
server from the
received
request

Protocol Identifier 2 Bytes 0 = MODBUS protocol

Initialized by the
client

Recopied by the
server from the
received
request

Length 2 Bytes Number of following
bytes

Initialized by the
client (request)

Initialized by
the server (
Response)

Unit Identifier 1 Byte Identification of a
remote slave
connected on a serial
line or on other buses.

Initialized by the
client

Recopied by the
server from the
received
request

The header is 7 bytes long:

x Transaction Identifier - It is used for transaction pairing, the MODBUS server copies
in the response the transaction identifier of the request.

x Protocol Identifier – It is used for intra-system multiplexing. The MODBUS protocol
is identified by the value 0.

x Length - The length field is a byte count of the following fields, including the Unit
Identifier and data fields.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 6/46

x Unit Identifier – This field is used for intra-system routing purpose. It is typically
used to communicate to a MODBUS+ or a MODBUS serial line slave through a
gateway between an Ethernet TCP-IP network and a MODBUS serial line. This field is
set by the MODBUS Client in the request and must be returned with the same value in
the response by the server.

All MODBUS/TCP ADU are sent via TCP to registered port 502.

Remark : the different fields are encoded in Big-endian.

3.2 MODBUS FUNCTIONS CODES DESCRIPTION
Standard function codes used on MODBUS application layer protocol are described in
details in the MODBUS Application Protocol Specification [1].

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

4 FUNCTIONAL DESCRIPTION

The MODBUS Component Architecture presented here is a general model including
both MODBUS Client and Server Components and usable on any device.

Some devices may only provide the server or the client component.

In the first part of this section a brief overview of the MODBUS messaging service
component architecture is given, followed by a description of each component
presented in the architectural model.

4.1 MODBUS COMPONENT ARCHITECTURE MODEL

USER
APPLICATION

Communication
Application

Layer

Modbus Client Modbus Server

Modbus Client
Interface

TCP
Management

Connection
 Management Access Ctl

TCP/IP Stack

Stack
parmeterization

Modbus Backend
Interface

R
es

so
ur

ce
 M

an
ag

em
en

t
&

Fl
ow

 C
on

tro
l

Figure 4: MODBUS Messaging Service Conceptual Architecture

x Communication Application Layer

A MODBUS device may provide a client and/or a server MODBUS interface.

A MODBUS backend interface can be provided allowing indirectly the access to user
application objects.
Four areas can compose this interface: input discrete, output discrete (coils), input
registers and output registers. A pre-mapping between this interface and the user
application data has to be done (local issue).

October 24, 2006 http://www.Modbus-IDA.org 7/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

Primary tables Object type Type of Comments

 Discretes Input Single bit Read-Only
This type of data can be provided by an I/O system.

Coils Single bit Read-Write
This type of data can be alterable by an application
program.

Input Registers 16-bit word Read-Only
This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write
This type of data can be alterable by an application
program.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Output Registers

Figure 5 MODBUS Data Model with

separate blocks

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Output Registers

R
W

R

W

Figure 6 MODBUS Data Model with only

1 block

¾ MODBUS Client

The MODBUS Client allows the user application to explicitly control information
exchange with a remote device. The MODBUS Client builds a MODBUS request from
parameter contained in a demand sent by the user application to the MODBUS Client
Interface.
The MODBUS Client uses a MODBUS transaction whose management includes waiting
for and processing of a MODBUS confirmation.

¾ MODBUS Client Interface

The MODBUS Client Interface provides an interface enabling the user application to
build the requests for various MODBUS services including access to MODBUS
application objects. The MODBUS Client interface (API) is not part of this
Specification, although an example is described in the implementation model.

¾ MODBUS Server

On reception of a MODBUS request this module activates a local action to read, to
write or to achieve some other actions. The processing of these actions is done totally
transparently for the application programmer. The main MODBUS server functions are
to wait for a MODBUS request on 502 TCP port, to treat this request and then to build a
MODBUS response depending on device context.

¾ MODBUS Backend Interface

The MODBUS Backend Interface is an interface from the MODBUS Server to the user
application in which the application objects are defined.

October 24, 2006 http://www.Modbus-IDA.org 8/46
Informative Note: The Backend Interface is not defined in this Specification

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 9/46

x TCP Management layer

Informative Note: The TCP/IP discussion in this Specification is based in part upon
reference [2] RFC 1122 to assist the user in implementing the MODBUS Application
Protocol Specification [1] over TCP/IP.

One of the main functions of the messaging service is to manage communication
establishment and ending and to manage the data flow on established TCP
connections.

¾ Connection Management

A communication between a client and server MODBUS Module requires the use of a
TCP connection management module. It is in charge to manage globally messaging
TCP connections.

Two possibilities are proposed for the connection management. Either the user
application itself manages TCP connections or the connection management is totally
done by this module and therefore it is transparent for the user application. The last
solution implies less flexibility.

The listening TCP port 502 is reserved for MODBUS communications. It is
mandatory to listen by default on that port. However, some markets or applications
might require that another port is dedicated to MODBUS over TCP. For that reason, it
is highly recommended that the clients and the servers give the possibility to the user
to parameterize the MODBUS over TCP port number. It is important to note that
even if another TCP server port is configured for MODBUS service in certain
applications, TCP server port 502 must still be available in addition to any
application specific ports.

¾ Access Control Module

In certain critical contexts, accessibility to internal data of devices must be forbidden for
undesirable hosts. That’s why a security mode is needed and security process may be
implemented if required.

x TCP/IP Stack layer

The TCP/IP stack can be parameterized in order to adapt the data flow control, the
address management and the connection management to different constraints specific
to a product or to a system. Generally the BSD socket interface is used to manage the
TCP connections.

� Resource management and Data flow control

In order to equilibrate inbound and outbound messaging data flow between the
MODBUS client and the server, data flow control mechanism is provided in all layers
of MODBUS messaging stack.
The resource management and flow control module is first based on TCP internal flow
control added with some data flow control in the data link layer and also in the user
application level.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 10/46

4.2 TCP CONNECTION MANAGEMENT

4.2.1 Connections management Module

4.2.1.1 General description

A MODBUS communication requires the establishment of a TCP connection between a
Client and a Server.
The establishment of the connection can be activated either explicitly by the User
Application module or automatically by the TCP connection management module.
In the first case an application-programming interface has to be provided in the user
application module to manage completely the connection. This solution provides
flexibility for the application programmer but it requires a good expertise on TCP/IP
mechanism.
In the second case the TCP connection management is completely hidden to the user
application that only sends and receives MODBUS messages. The TCP connection
management module is in charge to establish a new TCP connection when it is
required.
The definition of the number of TCP client and server connections is not on the scope of
this document (value n in this document). Depending on the device capacities the
number of TCP connections can be different.

Implementation Rules :

1) Without explicit user requirement, it is recommended to implement the automatic TCP

connection management

2) It is recommended to keep the TCP connection opened with a remote device and not

to open and close it for each MODBUS/TCP transaction,
Remark: However the MODBUS client must be capable of accepting a close request
from the server and closing the connection. The connection can be reopened when
required.

3) It is recommended for a MODBUS Client to open a minimum of TCP connections with

a remote MODBUS server (with the same IP address). One connection per application
could be a good choice.

4) Several MODBUS transactions can be activated simultaneously on the same TCP

Connection.
Remark: If this is done then the MODBUS transaction identifier must be used to
uniquely identify the matching requests and responses.

5) In case of a bi-directional communication between two remote MODBUS entities (

each of them is client and server), it is necessary to open separate connections for
the client data flow and for the server data flow.

6) A TCP frame must transport only one MODBUS ADU. It is advised against sending

multiple MODBUS requests or responses on the same TCP PDU

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

Idle

October 24, 2006 http://www.Modbus-IDA.org 11/46

Connection_established

Request_treatment

Wait

Oldest_unused_
connection_closed

Connection_establishment

Connection_accepted

Oldest_unused_
no_prioritary_
connection_closed

Active_Connection

network_transmission

Wait

Request_treatment

Connection_established

Connection_accepted

Connection_refused

Active_Connection

network_transmission

[connection established]

[Connection OK]

[<n connections]

[Connection NOK]

[< n connections]

[access ctl]

[connection request]

[IP forbidden]

[data]

[no access ctl]

[______Event on a socket[Request to a remote

[IP authorized]

[n connections]

[n connections]

[else]

Server Client

Figure 7: TCP connection management activity diagram

1. Explicit TCP connection management

The user application module is in charge of managing all the TCP connections: active
and passive establishment, connection ending, etc. This management is done for all
MODBUS communication between a client and a server. The BSD Socket interface is
used in the user application module to manage the TCP connection. This solution offers
a total flexibility but it implies that the application programmer has sufficient TCP
knowledge.
A limit of number of client and server connections has to be configured taking into
account the device capabilities and requirement.

2. Automatic TCP connection management

The TCP connection management is totally transparent for the user application module.
The connection management module may accept a sufficient number of client and
server connections.
Nevertheless a mechanism must be implemented in case of exceeding the number of
authorized connection. In such a case we recommend to close the oldest unused
connection.
A connection with a remote partner is established at the first packet received from a
remote client or from the local user application. This connection will be closed if a
termination arrived from the network or decided locally on the device. On reception of a
connection request, the access control option can be used to forbid device accessibility
to unauthorized clients.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

The TCP connection management module uses the Stack interface (usually BSD Socket
interface) to communicate with the TCP/IP stack.

In order to maintain compatibility between system requirements and server resources,
the TCP management will maintain 2 pools of connection.

� The first pool (priority connection pool) is made of connections that are never
closed on a local initiative. A configuration must be provided to set this pool up. The
principle to be implemented is to associate a specific IP address with each possible
connection of this pool. The devices with such IP addresses are said to be
“marked”. Any new connection that is requested by a marked device must be
accepted, and will be taken from the priority connection pool. It is also necessary to
configure the maximum number of Connections allowed for each remote device to
avoid that the same device uses all the connections of the priority pool.

� The second pool (non-priority connection pool) contains connections for non
marked devices. The rule that takes over here is to close the oldest connection
when a new connection request arrives from a non-marked device and when there
is no more connection available in the pool.

A configuration might be optionally provided to assign the number of connections
available in each pool. However (It is not mandatory) the designers can set the number
of connections at design time if required.

4.2.1.2 Connection management description

x Connection establishment :

The MODBUS messaging service must provide a listening socket on Port 502, which
permits to accept new connection and to exchange data with other devices.
When the messaging service needs to exchange data with a remote server, it must
open a new client connection with a remote Port 502 in order to exchange data with this
distant. The local port must be higher than 1024 and different for each client
connection.

Device Device

Client
Ports

Server
Port

502

n
(n>1024)

Server
Port

Client
Ports

502

n
(n>1024)Connection (@ IP1 n,

@IP2 502)

@ IP1 @ IP2

Figure 8: MODBUS TCP connection establishment

If the number of client and server connections is greater than the number of authorized
connections the oldest unused connection is closed. The access control mechanism
can be activated to check if the IP address of the remote client is authorized. If not the
new connection is refused.

October 24, 2006 http://www.Modbus-IDA.org 12/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 13/46

x MODBUS data transfer

A MODBUS request has to be sent on the right TCP connection already opened. The IP
address of the remote is used to find the TCP connection. In case of multiple TCP
connections opened with the same remote, one connection has to be chosen to send
the MODBUS message, different choice criteria can be used like the oldest one, the
first one. The connection has to maintain open during all the MODBUS communications.
As described in the following sections a client can initiate several MODBUS
transactions with a server without waiting the ending of the previous one.

� Connection closing

When the MODBUS communications are ended between a Client and a Server, the
client has to initiate a connection closing of the connection used for these
communications.

4.2.2 Impact of Operating Modes on the TCP Connection

Some Operating Modes (communication break between two operational End Points,
Crash and Reboot on one of the End Point, …) may have impacts on the TCP
Connections. A connection can be seen closed or aborted on one side without the
knowledge of the other side. The connection is said to be "half-open".
This section describes the behavior for each main Operating Modes. It is assumed that
the Keep Alive TCP mechanism is used on both end points (See section 4.3.2)

4.2.2.1 Communication break between two operational end points:

The origin of the communication break can be the disconnection of the Ethernet cable
on the Server side. The expected behavior is:

x If no packet is currently sent on the connection:
The communication break will not be seen if it lasts less than the Keep Alive timer
value. If the communication break lasts more than the Keep Alive timer value, an
error is returned to the TCP Management layer that can reset the connection.

x If Some packets are sent before and after the disconnection:
The TCP retransmission algorithms (Jacobson's, Karn's algorithms and exponential
backoff. See section 4.3.2) are activated. This may lead to a stack TCP layer Reset
of the Connection before the Keep Alive timer is over.

4.2.2.2 Crash and Reboot of the Server end point

After the crash and Reboot of the Server, the connection is "half-open" on Client side.
The expected behavior is:

x If no packet is sent on the half-open connection:
The TCP half-open connection is seen opened from the Client side as long as the
Keep Alive timer is not over. After that an error is returned to the TCP Management
layer that can reset the connection.

x If some packets are sent on the half-open connection:
The Server receives data on a connection that doesn't exist anymore. The stack
TCP layer sends a Reset to close the half-open connection on the Client side

4.2.2.3 Crash and Reboot of the Client

After the crash and Reboot of the Client, the connection is "half-open" on Server side.
The expected behavior is:

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 14/46

x No packet is sent on the half-open connection:
The TCP half-open connection is seen opened from the Server side as long as the
Keep Alive timer is not over. After that an error is returned to the TCP Management
layer that can reset the connection.

x If the Client opens a new connection before the Keep Alive timer is over :
 Two cases have to be studied:
� The connection opening has the same characteristics as the half-open

connection on the server side (same source and destination Ports, same source
and destination IP Addresses), therefore the connection opening will fail at the
TCP stack level after the Time-Out on Connection Establishment (75s on most of
Berkeley implementations). To avoid this long Time-Out during which it is not
possible to communicate, it is advised to ensure that different source port
numbers than the previous one are used for a connection opening after a reboot
on the client side.

� The connection opening has not the same characteristics as the half-open

connection on the server side (different source Ports, same destination Port,
same source and destination IP Address), therefore the connection is opened at
the stack TCP level and signaled to the Server TCP Management layer.
If the Server TCP Management layer only supports one connection from a remote
Client IP Address, it can close the old half-opened connection and use the new
one.
If the Server TCP Management layer supports several connections from a remote
Client IP Address, the new connection stays opened and the old one also stays
half-opened until the expiration of the Keep Alive Timer that will return an error to
the TCP Management layer. After that the TCP Management layer will be able to
Reset the old connection.

4.2.3 Access Control Module
The goal of this module is to check every new connection and using a list of authorized
remote IP addresses the module can authorize or forbid a remote Client TCP
connection.

In critical context the application programmer needs to choose the Access Control
mode in order to secure its network access. In such a case he needs to Authorize/forbid
access for each remote @IP. The user needs to provide a list of IP addresses and to
specify for each IP address if it’s authorized or not. By default, on security mode, the IP
addresses not configured by the user are forbidden. Therefore with the access control
mode a connection coming from an unknown IP address is closed.

4.3 USE of TCP/IP STACK

A TCP/IP stack provides an interface to manage connections, to send and receive data,
and also to do some parameterizations in order to adapt the stack behavior to the
device or system constraints.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

Network AccessNetwork Access
Ethernet II and 802.3 layerEthernet II and 802.3 layer

 MsgMsg

TCPTCP

ModbusModbus

IPIP
ICMPICMP

ARPARP

The goal of this section is to give
an overview of the Stack interface
and also some information
concerning the parameterization of
the stack. This overview focuses
on the features used by the
MODBUS Messaging.

For more information, the advice is to read the RFC 1122 that provides guidance for
vendors and designers of Internet communication software. It enumerates standard
protocols that a host connected to the Internet must use as well as an explicit set of
requirements and options.
The stack interface is generally based on the BSD (Berkeley Software Distribution)
Interface that is described in this document.
.

4.3.1 Use of BSD Socket interface
Remark : some TCP/IP stacks propose other types of interfaces for performance
issues. A MODBUS client or server can use these specific interfaces, but this use will
be not described in this specification.

A socket is an endpoint of communication. It is the basic building block for
communication. A MODBUS communication is executed by sending and receiving data
through sockets. The TCPIP library provides only stream sockets using TCP and
providing a connection-based communication service.
The Sockets are created via the socket () function. A socket number is returned, which
is then used by the creator to access the socket. Sockets are created without
addresses (IP address and port number). Until a port is bound to a socket, it cannot be
used to receive data.
The bind () function is used to bind a port number to a socket. The bind () creates an
association between the socket and the port number specified.
In order to initiate a connection, the client must issue the connect () function specifying
the socket number, the remote IP address and the remote listening port number (active
connection establishment).
In order to complete a connection, the server must issue the accept () function
specifying the socket number that was specified in the prior listen () call (passive
connection establishment). A new socket is created with the same properties as the
initial one. This new socket is connected to the client’s socket, and its number is
returned to the server. The initial socket is thereby free for other clients that might want
to connect with the server.

After the establishment of the TCP connection the data can be transferred. The send()
and recv() functions are designed specifically to be used with sockets that are already
connected.

The setsockopt () function allows a socket’s creator to associate options with a socket.
These options modify the behavior of the socket. The description of these options is
given in the section 4.3.2.

The select () function allows the programmer to test events on all sockets.

October 24, 2006 http://www.Modbus-IDA.org 15/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 16/46

The shutdown () function allows a socket user to disable send () and/or receive () on
the socket.

Once a socket is no longer needed, its socket descriptor can be discarded by using the
close () function.

Figure 39: MODBUS Exchanges describes a full MODBUS communication between a
client and a s server. The Client establishes the connection and sends 3 MODBUS
requests to the server without waiting the response of the first one. After receiving all
the responses the Client closes the connection properly.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

CLIENT

(IP1)

fd=socket()

bind(fd,n)

connect(fd,IP2,502)

send(fd)

SERVER
(IP2)

fd'=socket()

bind(fd',502)

listen(fd')

fd''=accept(fd')

recv(fd'')

MODBUS Request PDU 1MODBUS Request PDU i

send(fd)

recv(fd'')

send(fd")

MODBUS Response PDU 1

recv(fd)

MODBUS Request PDU N

send(fd)

MODBUS Response PDU i

recv(fd) recv(fd'')

MODBUS Response PDU N

recv(fd) send(fd")

send(fd")

close(fd)

close(fd")

SYN J

SYN K, ACK J+1

ACK K+1

FIN

ACK of FIN

FIN

ACK of FIN

Figure 9: MODBUS Exchanges

October 24, 2006 http://www.Modbus-IDA.org 17/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 18/46

4.3.2 TCP layer parameterization
Some parameters of the TCP/IP stack can be adjusted to adapt its behavior to the
product or system constraints. The following parameters can be adjusted in the TCP
layer:

x Parameters for each connection:

SO-RCVBUF, SO-SNDBUF:

These parameters allow setting the high water mark for the Send and the Receive
Socket. They can be adjusted for flow control management. The size of the received
buffer is the maximum size advertised window for that connection. Socket buffer sizes
must be increased in order to increase performances. Nevertheless these values must
be smaller than internal driver resources in order to close the TCP window before
exhausting internal driver resources.

The received buffer size depends on the TCP Windows size, the TCP Maximum
segment size and the time needed to absorb the incoming frames. With a Maximum
Segment Size of 300 bytes (a MODBUS request needs a maximum of 256 bytes + the
MBAP header size), if we need 3 frames buffering, the socket buffer size value can be
adjusted to 900 bytes. For biggest needs and best-scheduled time, the size of the TCP
window may be increased.

TCP-NODELAY:

Small packets (called tinygrams) are normally not a problem on LANs, since most LANs
are not congested, but these tinygrams can lead to congestion on wide area networks.
A simple solution, called the "NAGLE algorithm", is to collect small amounts of data and
sends them in a single segment when TCP acknowledgments of previous packets
arrive.
In order to have better real-time behavior it is recommended to send small amounts of
data directly without trying to gather them in a single segment. That is why it is
recommended to force the TCP-NODELAY option that disables the "NAGLE algorithm"
on client and server connections.

SO-REUSEADDR:

When a MODBUS server closes a TCP connection initialized by a remote client, the
local port number used for this connection cannot be reused for a new opening while
that connection stays in the "Time-wait" state (during two MSL : Maximum Segment
Lifetime).

It is recommended specifying the SO-REUSEADDR option for each client and server
connection to bypass this restriction. This option allows the process to assign itself a
port number that is part of a connection that is in the 2MSL wait for client and listening
socket.

SO-KEEPALIVE:

By default on TCP/IP protocol no data are sent across an idle TCP connection.
Therefore if no process at the ends of a TCP connection is sending data to the other,
nothing is exchanged between the two TCP modules. This assumes that either the
client application or the server application uses timers to detect inactivity in order to
close a connection.
It is recommended to enable the KEEPALIVE option on both client and server
connection in order to poll the other end to know if the distant has either crashed and is
down or crashed and rebooted.
Nevertheless we must keep on mind that enabling KEEPALIVE can cause perfectly
good connections to be dropped during transient failures, that it consumes unnecessary
bandwidth on the network if the keep alive timer is too short.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 19/46

x Parameters for the whole TCP layer:

Time Out on establishing a TCP Connection:

Most Berkeley-derived systems set a time limit of 75 seconds on the establishment of a
new connection, this default value should be adapted to the real time constraint of the
application.

Keep Alive parameters:

The default idle time for a connection is 2 hours. Idles times in excess of this value
trigger a keep alive probe. After the first keep alive probe, a probe is sent every 75
seconds for a maximum number of times unless a probe response is received.
The maximum number of keep Alive probes sent out on an idle connection is 8. If no
probe response is received after sending out the maximum number of keep Alive
probes,TCP signals an error to the application that can decide to close the connection

Time-out and retransmission parameters:

A TCP packet is retransmitted if its loss has been detected. One way to detect the loss
is to manage a Retransmission Time-Out (RTO) that expires if no acknowledgement
has been received from the remote side.
TCP manages a dynamic estimation of the RTO. For that purpose a Round-Trip Time
(RTT) is measured after the send of every packet that is not a retransmission. The
Round-Trip Time (RTT) is the time taken for a packet to reach the remote device and to
get back an acknowledgement to the sending device. The RTT of a connection is
calculated dynamically, nevertheless if TCP cannot get an estimate within 3 seconds,
the default value of the RTT is set to 3 seconds.
If the RTO has been estimated, it applies to the next packet sending. If the
acknowledgement of the next packet is not received before the estimated RTO
expiration, the Exponential BackOff is activated. A maximum number of
retransmissions of the same packet is allowed during a certain amount of time. After
that if no acknowledgement has been received, the connection is aborted.
The maximum number of retransmissions and the maximum amount of time before the
abort of the connection (tcp_ip_abort_interval) can be set up on some stacks.

Some retransmission algorithms are defined in TCP standards :

� The Jacobson's RTO estimation algorithm is used to estimate the
Retransmission Time-Out (RTO),

� The Karn's algorithm says that the RTO estimation should not be done on a
retransmitted segment,

� The Exponential BackOff defines that the retransmission time-out is doubled for
each retransmission with an upper limit of 64 seconds.

� The fast retransmission algorithm allows retransmitting after the reception of
three duplicate acknowledgments. This algorithm is advised because on a LAN it
may lead to a quicker detection of the loss of a packet than waiting for the RTO
expiration.

The use of these algorithms is recommended for a MODBUS implementation.

4.3.3 IP layer parameterization

4.3.3.1 IP Parameters
The following parameters must be configured in the IP layer of a MODBUS
implementation :

x Local IP Address : the IP address can be part of a Class A, B or C.

x Subnet Mask, : Subnetting an IP Network can be done for a variety of reasons : use of

different physical media (such as Ethernet, WAN, etc.), more efficient use of

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

network addresses, and the capability to control network traffic. The Subnet Mask
has to be consistent with the IP address class of the local IP address.

x Default Gateway: The IP address of the default gateway has to be on the same

subnet as the local IP address. The value 0.0.0.0 is forbidden. If no gateway is to be
defined then this value is to be set to either 127.0.0.1 or the Local IP address.

Remark : The MODBUS messaging service doesn't require the fragmentation function in
the IP layer.

The local IP End Point shall be configured with a local IP Address and with a Subnet
Mask and a Default Gateway (different from 0.0.0.0) .

4.4 COMMUNICATION APPLICATION LAYER

4.4.1 MODBUS Client

Modbus
Client

TCP/IP

Modbus
Server
TCP/IP

Modbus
Server
TCP/IP

Modbus
Server

Serial Line

Modbus
Server

Serial Line

Modbus
Client

Serial Line

Modbus
Client

TCP/IP

Modbus TCP / IP

Client TCP/IP
gateway

Server TCP/IP
gateway

Modbus Serial line

Figure 10: MODBUS Client unit

4.4.1.1 MODBUS client design

The definition of the MODBUS/TCP protocol allows a simple design of a client. The
following activity diagram describes the main treatments that are processed by a client
to send a MODBUS request and to treat a MODBUS response.

October 24, 2006 http://www.Modbus-IDA.org 20/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

Send negative
confirmation to user
Application

Process
MODBUS
Confirmation

Set Waiting
response timer

Send MODBUS request
To TCP management

Wait

Find out pending
transaction

Idle

Send positive
confirmation to
User Application

Build MODBUS
request

Wait

Idle

[Retries number reached]

[Request_from_the_user application]

[Confirmation error]

Waiting_response_timer_expires

[Reveive_Response_from_TCP_Mgt]

[Retries number not reached]

[Confirmation OK]

[Send Not OK] [Send OK]

Figure 11: MODBUS Client Activity Diagram

A MODBUS client can receive three events:
� A new demand from the user application to send a request, in this case a MODBUS

request has to be encoded and be sent on the network using the TCP management
component service. The lower layer (TCP management module) can give back an
error due to a TCP connection error, or some other errors.

� A response from the TCP management, in this case the client has to analyze the
content of the response and send a confirmation to the user application

� The expiration of a Time out due to a non-response. A new retry can be sent on the
network or a negative confirmation can be sent to the User Application.
Remark : These retries are initiated by the MODBUS client, some other retries can
also be done by the TCP layer in case of TCP acknowledge lack.

4.4.1.2 Build a MODBUS Request
Following the reception of a demand from the user application, the client has to build a
MODBUS request and to send it to the TCP management.
Building the MODBUS request can be split in several sub-tasks:

� The instantiation of a MODBUS transaction that enables the Client to memorize all

required information in order to bind later the response to the request and to send
the confirmation to the user application.

� The encoding of the MODBUS request (PDU + MPAB header). The user application
that initiates the demand has to provide all required information which enables the
Client to encode the request. The MODBUS PDU is encoded according to the
MODBUS Application Protocol Specification [1]. (MB function code, associated
parameters and application data). All fields of the MBAP header are filled. Then,
the MODBUS request ADU is built prefixing the PDU with the MBAP header

October 24, 2006 http://www.Modbus-IDA.org 21/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

� The sending of the MODBUS request ADU to the TCP management module which is
in charge of finding the right TCP socket towards the remote Server. In addition to
the MODBUS ADU the Destination IP address must also be passed.

The following activity diagram describes, more deeply than in Figure 11 MODBUS
Client Activity Diagram, the request building phase.

Instantiate a MB
transaction

Initialize the
transaction

Send MB
request to TCP
Mgt

Send a
negative
confirmation to
the user
application

Encode the MB
request PDU

Encode the
MBAP header

[No Transaction available]

[Transaction available]

Figure 12: Request building activity diagram

The following example describes the MODBUS request ADU encoding for reading the
register # 5 in a remote server :

i MODBUS Request ADU encoding :

 Description Size Example
Transaction Identifier Hi 1 0x15
Transaction Identifier Lo 1 0x01
Protocol Identifier 2 0x0000
Length 2 0x0006

MBAP Header

Unit Identifier 1 0xFF

October 24, 2006 http://www.Modbus-IDA.org 22/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 23/46

Function Code (*) 1 0x03
Starting Address 2 0x0004

MODBUS
request

Quantity of Registers 2 0x0001

(*) please see the MODBUS Application Protocol Specification [1].

x Transaction Identifier

The transaction identifier is used to associate the future response with the request.
So, at a time, on a TCP connection, this identifier must be unique. There are
several manners to use the transaction identifier:

- For example, it can be used as a simple "TCP sequence number" with a
counter which is incremented at each request.

- It can also be judiciously used as a smart index or pointer to identify a
transaction context in order to memorize the current remote server and the
pending MODBUS request.

Normally, on MODBUS serial line a client must send one request at a time. This means
that the client must wait for the answer to the first request before sending a second
request. On TCP/MODBUS, several requests can be sent without waiting for a
confirmation to the same server. The MODBUS/TCP to MODBUS serial line gateway is
in charge of ensuring compatibility between these two behaviors.
The number of requests accepted by a server depends on its capacity in term of
number of resources and size of the TCP windows. In the same way the number of
transactions initialized simultaneously by a client depends also on its resource capacity.
This implementation parameter is called "NumberMaxOfClientTransaction" and must
be described as one of the MODBUS client features. Depending of the device type this
parameter can take a value from 1 to 16.

x Unit Identifier

This field is used for routing purpose when addressing a device on a MODBUS+
or MODBUS serial line sub-network. In that case, the “Unit Identifier” carries the
MODBUS slave address of the remote device:

If the MODBUS server is connected to a MODBUS+ or MODBUS Serial Line
sub-network and addressed through a bridge or a gateway, the MODBUS Unit
identifier is necessary to identify the slave device connected on the sub-
network behind the bridge or the gateway. The destination IP address
identifies the bridge itself and the bridge uses the MODBUS Unit identifier to
forward the request to the right slave device.
The MODBUS slave device addresses on serial line are assigned from 1 to
247 (decimal). Address 0 is used as broadcast address.

On TCP/IP, the MODBUS server is addressed using its IP address; therefore, the
MODBUS Unit Identifier is useless. The value 0xFF has to be used.

When addressing a MODBUS server connected directly to a TCP/IP network,
it’s recommended not using a significant MODBUS slave address in the “Unit
Identifier” field. In the event of a re-allocation of the IP addresses within an
automated system and if a IP address previously assigned to a MODBUS
server is then assigned to a gateway, using a significant slave address may
cause trouble because of a bad routing by the gateway. Using a non-
significant slave address, the gateway will simply discard the MODBUS PDU
with no trouble. 0xFF is recommended for the “Unit Identifier" as non-
significant value.
Remark : The value 0 is also accepted to communicate directly to a
MODBUS/TCP device.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 24/46

4.4.1.3 Process MODBUS Confirmation
When a response frame is received on a TCP connection, the Transaction Identifier
carried in the MBAP header is used to associate the response with the original request
previously sent on that TCP connection:
� If the Transaction Identifier doesn't refer to any MODBUS pending transaction, the

response must be discarded.
� If the Transaction Identifier refers to a MODBUS pending transaction, the response

must be parsed in order to send a MODBUS Confirmation to the User Application
(positive or negative confirmation)

Parsing the response consists in verifying the MBAP Header and the MODBUS PDU
response:

� MBAP Header
After the verification of the Protocol Identifier that must be 0x0000, the length gives
the size of the MODBUS response.
If the response comes from a MODBUS server device directly connected to the
TCP/IP network, the TCP connection identification is sufficient to unambiguously
identify the remote server. Therefore, the Unit Identifier carried in the MBAP
header is not significant (value 0xFF) and must be discarded.
If the remote server is connected on a Serial Line sub-network and the response
comes from a bridge, a router or a gateway, then the Unit Identifier (value != 0xFF)
identifies the remote MODBUS server which has originally sent the response.

� MODBUS Response PDU

The function code must be verified and the MODBUS response format analyzed
according to the MODBUS Application Protocol:
x if the function code is the same as the one used in the request, and if the

response format is correct, then the MODBUS response is given to the user
application as a Positive Confirmation.

x If the function code is a MODBUS exception code (Function code + 80H), the
MODBUS exception response is given to the user application as a Positive
Confirmation.

x If the function code is different from the one used in the request (=non
expected function code), or if the format of the response is incorrect, then an
error is signaled to the user application using a Negative Confirmation.

Remark: A positive confirmation is a confirmation that the command was received and
responded to by the server. It does not imply that the server was able to successfully
act on the command (failure to successfully act on the command is indicated by the
MODBUS Exception response).

The following activity diagram describes, more deeply than in Figure 11 MODBUS
Client Activity Diagram, the confirmation processing phase.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

Use MB transaction to
bind with the request

Process_MB_
exception

Find Out pending
MB transaction

Extract MB
Response

Discard
Response

Analyse MBAP header

Analyse Response
PDU

Wait

Send positive
confirmation to user
application

Send negative
Confirmation to
user Application

Wait

[Modbus_protocol]

[No Pending Transaction]

[Incorrect Response]

[Other_protocol]

[MB Exception response]

[MB response OK]

[PendingTransaction]

Figure 13: Process MODBUS Confirmation activity diagram

4.4.1.4 Time-out management

There is deliberately NO specification of required response time for a transaction over
MODBUS/TCP.
This is because MODBUS/TCP is expected to be used in the widest possible variety of
communication situations, from I/O scanners expecting sub-millisecond timing to long
distance radio links with delays of several seconds.
From a client perspective, the timeout must take into account the expected transport
delays across the network, to determine a ‘reasonable’ response time. Such transport
delays might be milliseconds for a switched Ethernet, or hundreds of milliseconds for a
wide area network connection.
In turn, any ‘timeout’ time used at a client to initiate an application retry should be
larger than the expected maximum ‘reasonable’ response time. If this is not followed,
there is a potential for excessive congestion at the target device or on the network,
which may in turn cause further errors. This is a characteristic, which should always be
avoided.

October 24, 2006 http://www.Modbus-IDA.org 25/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

So in practice, the client timeouts used in high performance applications are always
likely to be somewhat dependent on network topology and expected client performance.
Applications which are not time critical can often leave timeout values to the normal
TCP defaults, which will report communication failure after several seconds on most
platforms.

4.4.2 MODBUS Server

Modbus
Client

TCP/IP

Modbus
Server
TCP/IP

Modbus
Server
TCP/IP

Modbus
Server

Serial Line

Modbus
Server

Serial Line

Modbus
Client

Serial Line

Modbus
Client

TCP/IP

Modbus TCP / IP

Client TCP/IP
gateway

Server TCP/IP
gateway

Modbus Serial line

Figure 14: MODBUS Server unit

The role of a MODBUS server is to provide access to application objects and services
to remote MODBUS clients.

Different kind of access may be provided depending on the user application :
� simple access like get and set application objects attributes
� advanced access in order to trigger specific application services

The MODBUS server has:
� To map application objects onto readable and writable MODBUS objects, in order

to get or set application objects attributes.
� To provide a way to trigger services onto application objects.

In run time the MODBUS server has to analyze a received MODBUS request, to
process the required action, and to send back a MODBUS response.

Informative Note: The application objects and services of the Backend Interface obtain
the requested data based upon the function code, and the User is responsible.

October 24, 2006 http://www.Modbus-IDA.org 26/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

4.4.2.1 MODBUS Server Design

The MODBUS Server design depends on both :

� the kind of access to the application objects (simple access to attributes or
advanced access to services)

� the kind of interaction between the MODBUS server and the user application
(synchronous or asynchronous).

The following activity diagram describes the main treatments that are processed by the
Server to obtain a MODBUS request from TCP Management, then to analyze the
request, to process the required action, and to send back a MODBUS response.

Build a MODBUS
response

Wait

MODBUS_PDU_Checking...

Idle

Build a MODBUS
Exception

Send response
to TCP_Mgt

MODBUS_Service_Processing

Invoke back
end interface

Response
processing

Release the
MODBUS server
transaction

Wait

MODBUS_PDU_Checking...

[Processing OK] [Processing OK]

[Need user application processing]

[Server init]

[Reception of a MODBUS indication
from TCP Mgt]

[Response from user application]

[MODBUS transaction accepted]

[MB transaction refused]

[MB Indication discarded]

[Invocation user application done]

[Processing not OK]

[Processing not complete]

[MB Exception OK]

[processing ends]

[Processing not OK]

[MB Response OK]

Figure 15: Process MODBUS Indication activity diagram

October 24, 2006 http://www.Modbus-IDA.org 27/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 28/46

As shown in the previous activity diagram:

� Some services can be immediately processed by the MODBUS Server itself, with
no direct interaction with the User Application ;

� Some services may require also interacting explicitly with the User Application to
be processed ;

� Some other advanced services require invoking a specific interface called
MODBUS Back End service. For example, a User Application service may be
triggered using a sequence of several MODBUS request/response transactions
according to a User Application level protocol. The Back End service is
responsible for the correct processing of all individual MODBUS transactions in
order to execute the global User Application service.

A more complete description is given in the following sections.

The MODBUS server can accept to serve simultaneously several MODBUS requests.
The maximum number of simultaneous MODBUS requests the server can accept is one
of the main characteristics of a MODBUS server. This number depends on the server
design and its processing and memory capabilities. This implementation parameter is
called "NumberMaxOfSeverTransaction" and must be described as one of the
MODBUS server features. It may have a value from 1 to 16 depending on the device
capabilities.

The behavior and the performance of the MODBUS server are significantly affected by
the "NumberMaxOfTransaction" parameter. Particularly, it's important to note that the
number of concurrent MODBUS transactions managed may affect the response time of
a MODBUS request by the server.

4.4.2.2 MODBUS PDU Checking

The following diagram describes the MODBUS PDU Checking activity.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

Parse the
MBAP header

Instantiate a
MB Transaction

MB Indication
discarded

MB Transaction
refused

MB Transaction
accepted

Parse The MB
PDU

[MBAP OK]

[Transaction available]

[OK]

[No Transaction available]

[Error on MB PDU]

[Error on MBAP]

Figure 16: MODBUS PDU Checking activity diagram

The MODBUS PDU Checking function consists of first parsing the MBAP Header. The
Protocol Identifier field has to be checked :

� If it is different from MODBUS protocol type, the indication is simply discarded.
� If it is correct (= MODBUS protocol type; value 0x00), a MODBUS transaction is

instantiated.

The maximum number of MODBUS transactions the server can instantiate is defined by
the "NumberMaxOfTransaction" parameter (A system or a configuration parameter).

In case of no more transactions available, the server builds a MODBUS exception
response (Exception code 6 : Server Busy).

If a MODBUS transaction is available, it's initialized in order to memorize the following
information:

x The TCP connection identifier used to send the indication (given by the TCP
Management)

x The MODBUS Transaction ID (given in MBAP Header)
x The Unit Identifier (given in MBAP Header)

Then the MODBUS PDU is parsed. The function code is first controlled :
� in case of invalidity a MODBUS exception response is built (Exception code 1 : Invalid

function).
� If the function code is accepted, the server initiates the "MODBUS Service

processing" activity.

October 24, 2006 http://www.Modbus-IDA.org 29/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

4.4.2.3 MODBUS service processing

Analyse
requested service

Local Service
processing

Build Modbus
ResponseBuild Modbus

Exception Response

Send an invocation to
User Application
through MB Backend
interface

Response
processing

[Need User App processing]

[Completed]

[Local processing]

Transaction_accepted

[Processing OK]

[Processing not completed]

[Processing not OK]

Response_from_user_App

[Processing OK]

[Processing Not OK]

Figure 17: MODBUS service processing activity diagram

The processing of the required MODBUS service can be done in different ways
depending on the device software and hardware architecture as described in the
hereafter examples :

x Within a compact device or a mono-thread architecture where the MODBUS
server can access directly to the user application data, the required service can
be processed "locally" by the server itself without invoking the Back End service.
The processing is done according to the MODBUS Application Protocol
Specification [1]. In case of an error, a MODBUS exception response is built.

x Within a modular multi-processor device or a multi-thread architecture where the
"communication layers" and the "user application layer" are 2 separate entities,
some trivial services can be processed completely by the Communication entity
while some others can require a cooperation with the User Application entity
using the Back End service.

To interact with the User Application, the MODBUS Backend service must implement all
appropriate mechanisms in order to handle User Application transactions and to
manage correctly the User Application invocations and associated responses.

4.4.2.4 User Application Interface (Backend Interface)
Several strategies can be implemented in the MODBUS Backend service to achieve its
job although they are not equivalent in terms of user network throughput, interface
bandwidth usage, response time, or even design workload.

October 24, 2006 http://www.Modbus-IDA.org 30/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 31/46

The MODBUS Backend service will use the appropriate interface to the user
application :
� Either a physical interface based on a serial link, or a dual-port RAM scheme, or

a simple I/O line, or a logical interface based on messaging services provided by
an operating system.

� The interface to the User Application may be synchronous or asynchronous.

The MODBUS Backend service will also use the appropriate design pattern to get/set
objects attributes or to trigger services. In some cases, a simple "gateway pattern" will
be adequate. In some other cases, the designer will have to implement a "proxy
pattern" with a corresponding caching strategy, from a simple exchange table history to
more sophisticated replication mechanisms.

The MODBUS Backend service has the responsibility to implement the protocol
transcription in order to interact with the User Application. Therefore, it can have to
implement mechanisms for packet fragmentation/reconstruction, data consistency
guarantee, and synchronization whatever is required.

4.4.2.5 MODBUS Response building
Once the request has been processed, the MODBUS server has to build the response
using the adequate MODBUS server transaction and has to send it to the TCP
management component.
Depending on the result of the processing two types of response can be built :
� A positive MODBUS response :

� The response function code = The request function code

� A MODBUS Exception response :
� The objective is to provide to the client relevant information concerning the

error detected during the processing ;
� The response function code = the request function code + 0x80 ;
� The exception code is provided to indicate the reason of the error.

Exception

Code
MODBUS name Comments

01 Illegal Function
Code

The function code is unknown by the server

02 Illegal Data
Address

Dependant on the request

03 Illegal Data Value Dependant on the request
04 Server Failure The server failed during the execution
05 Acknowledge The server accepted the service invocation but the

service requires a relatively long time to execute. The
server therefore returns only an acknowledgement of the
service invocation receipt.

06 Server Busy The server was unable to accept the MB Request PDU.
The client application has the responsibility of deciding if
and when to re-send the request.

0A Gateway problem Gateway paths not available.
0B Gateway problem The targeted device failed to respond. The gateway

generates this exception

The MODBUS response PDU must be prefixed with the MBAP header which is built
using data memorized in the transaction context.

x Unit Identifier
The Unit Identifier is copied as it was given within the received MODBUS request
and memorized in the transaction context.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

x Length
The server calculates the size of the MODBUS PDU plus the Unit Identifier byte.
This value is set in the "Length" field.

x Protocol Identifier
The Protocol Identifier field is set to 0x0000 (MODBUS protocol), as it was given
within the received MODBUS request.

x Transaction Identifier
This field is set to the "Transaction Identifier" value that was associated with the
original request and memorized in the transaction context.

Then the MODBUS response must be returned to the right MODBUS Client using the
TCP connection memorized in the transaction context. When the response is sent, the
transaction context must be free.

5 IMPLEMENTATION GUIDELINE

The objective of this section is to propose an example of a messaging service
implementation.
The model describes below can be used as a guideline during a client or a server
implementation of a MODBUS messaging service.

Informative Note: The messaging service implementation is the responsibility of the
User.

5.1 OBJECT MODEL DIAGRAM

Communication application layer

TCP management

Configuration layer

InterfaceUserApplication

InterfaceIndicationMsg InterfaceResponseMsg

User Application

Figure 18: MODBUS Messaging Service Object Model Diagram
October 24, 2006 http://www.Modbus-IDA.org 32/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 33/46

Four main packages compose the Object Model Diagram:
x The Configuration layer which configures and manages operating modes of

components of other packages
x The TCP Management which interfaces the TCP/IP stack and the communication

application layer managing TCP connection. It implies the management of socket
interface.

x The Communication application layer which is composed by the MODBUS client
on one side and the MODBUS server on the other side. This package is linked
with the user application.

The User application, which corresponds to the device application, is completely dependent
on the device and therefore it will be not part of this Specification.

This model is independent of implementation choices like the type of OS, the memory
management, etc. In order to guarantee this independence generic Interface layers are
used between the TCP management layer and the communication layer and between
the communication layer and the user application layer.
Different implementations of this interface can be realized by the User: Pipe between
two tasks, shared memory, serial link interface, procedural call, etc.
Some assumptions have to be taken to define the hereafter implementation model :
x Static memory management
x Synchronous treatment of the server
x One task to process the receptions on all sockets.

5.1.1 TCP management package

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

TCP management
package

InterfaceIndicationMsg
(from Logical View) InterfaceResponseMsg

(from Logical View)

ItemConnexion
SocketDescript : Int
IPSource : Long
PortSource : Long
PortDest : Long
IPdestination : long
BufferIn : Char*
BufferOut : Char*

ConnexionMgt
NbConnectionSupported : Int
NbLocalConnection : Int
NbRemoteConnection : int

m_sendData()
m_Receivedata()
m_isConnectionAuthorized()

InterfaceConnex ion

GetObjectConnexion()
FreeObjectConnexion()
RetreivingObjectConnexion()

MBAP

IsMdbHeader()
GetMessagelength()
WriteTransactionId()
ReadTransactionId()

TCPConnexion

IsConnexionRequest()
OpenConnexion()
AcceptConnexion()
CloseConnexion()
IsEtablishedConnexion()

StackTCP IP

Socket interface()

Figure 19: MODBUS TCP management package

The TCP management package comprises the following classes :

CInterfaceConnexion: The role of this class consists in managing memory pool for
connections.

CItemConnexion: This class contains all information needed to describe a connection.

CTCPConnexion:, This class provides methods for managing automatically a TCP
connection (Interface socket is provided by CStackTCP_IP).

CConnexionMngt: This class manages all connections and send query/response to
MODBUS Server/MODBUS Client through CinterfaceIndicationMsg and
CInterfaceResponseMsg. This class also treats the Access control for the connection
opening.

CMBAP: This class provides methods for reading/writing/analyzing the MODBUS
MBAP.

CStackTCP_IP: This class Implements socket services and provides parameterization
of the stack.

October 24, 2006 http://www.Modbus-IDA.org 34/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

5.1.2 Configuration layer package

Operating Mode

m_Configure()
m_Start()
m_Stop()
m_Reset()

ConfigurationObject
GlobalState : char
MyModbusAddress : Int
MyIPAddress : long
MyPortNumber : Long
NumberAuthorized_IP : int
ListAuthorized_IP : int
NumberForbidden_IP : Int
ListForbidden_IP : long()
NumberConnect ionSupported : int

TCP management
(from Logical View)

Communication applicat ion layer
(from Logical View)

--

Configuartion layer
package

Figure 20: MODBUS Configuration layer package

The Configuration layer package comprises the following classes :

TConfigureObject: This class groups all data needed for configuring each other
component. This structure is filled by the method m_Configure from the class
CoperatingMode. Each class needing to be configured gets its own configuration data
from this object. The configuration data is implementation dependent therefore the list
of attributes of this class is provided as an example.

COperatingMode: The role of this class is to fill the TConfigureObject (according to
the user configuration) and to manage the operating modes of the classes described
below:

� CMODBUSServer
� CMODBUSClient

October 24, 2006 http://www.Modbus-IDA.org 35/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

� CconnexionMngt

5.1.3 Communication layer package

InterfaceUserApplication
(from Logical View)

ModbusServer

m_ServerReceivingMessage()
m_ServerModbus()
m_BuildResponse()
m_InitServerfunction()

ModbusPDU

IsMdbAnalysisOfDataCorrect()
m_BuildModbusException()
m_WritePDU()

Transaction
TransactionId : int
TimeSnapShot : int

IsTransactionTimeOut()
m_WriteTransactionID()
m_StartTimesnapShoot()

InterfaceResponseMsg
(from Logical View)

InterfaceIndicationMsg
(from Logical View)

ModbusClient

m_ClientReceivingResponse()
m_ClientReceivingMessage()
m_ClientModbus()

--

--

Communication
Application layer
package

Figure 21: MODBUS Communication Application layer package

The Communication Application layer package comprises the following classes :

CMODBUSServer: MODBUS query is received from class CInterfaceIndicationMsg
(by the method m_ServerReceivingMessage). The role of this class is to build the
MODBUS response or the MODBUS Exception according the query (incoming from
network). This class implements the Graph State of MODBUS server. Response can be
built only if class COperatingMode has sent both user configuration and right operating
modes.

CMODBUSClient: MODBUS query is read from class CInterfaceUserApplication, The
client task receives query by the method m_ClientReceivingMessage. This class

October 24, 2006 http://www.Modbus-IDA.org 36/46

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 37/46

implements the State Graph of MODBUS client and manages transactions for linking
query with response (from network). Query can be sent over network only if class
CoperatingMode has sent both user configuration and right operating modes.

CTransaction: This class implements methods and structures for managing
transactions.

5.1.4 Interface classes

CInterfaceUserApplication: This class represents the interface with the user
application, it provides two methods to access to the user data. In a real
implementation this method can be implemented in different way depending of the
hardware and software device capabilities (equivalent to an end-driver, example access
to PCMCIA, shared memory, etc).

CInterfaceIndicationMsg: This Interface class is proposed for sending query from
Network to the MODBUS Server, and for sending response from Network for the Client.
This class interfaces TCPManagement and ‘Communication Application Layer’
packages (From Network). The implementation of this class is device dependent.

 CInterfaceResponseMsg: This Interface class is used for receiving response from the
Server and for sending query from the client to the Network. This class interfaces
packages ‘Communication Application Layer’ and package ‘TCPManagement’ (To
Network). The implementation of this class is device dependent.

5.2 IMPLEMENTATION CLASS DIAGRAM

The following Class Diagram describes the complete diagram of a proposal
implementation.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 38/46

Figure 22: Class Diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 39/46

5.3 SEQUENCE DIAGRAMS
Two Sequence diagrams are described hereafter are an example in order to illustrate a
Client MODBUS transaction and a Server MODBUS transaction.

Figure 23: MODBUS client sequence diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 40/46

General comments for a better understanding of the Client sequence diagram:

First step: A Reading query comes from User Application (method m_Read).

Second Step: The ‘Client’ task receives the MODBUS query (method
m_ClientReceivingMessage). This is the entry point of the Client. To associate the
query with the corresponding response when it will arrive, the Client uses a
Transaction resource (Class CTransaction). The MODBUS query is sent to the
TCP_Management by calling the class interface CInterfaceResponseMsg (method
m_MODBUSRequest)

Third Step: If the connection is already established there is nothing to do on
connection, the message can be send over the network. Otherwise, a connection must
be opened before the message can be sent over the network.
At this time the client is waiting for a response (from a remote server)

Fourth step: Once a response has been received from the network, the TCP/IP stack
receives data (method m_EventOnSocket is implicitly called).
 If the connection is already established, then the MBAP is read for retrieving the
connection object (connection object gives memory resource and other information).
Data coming from network is read and confirmation is sent to the client task via the
class Interface CInterfaceIndicationMsg (method m_MODBUSConfirmation). Client
task receives the MODBUS Confirmation (method m_ClientReceivingResponse).
Finally the response is written to the user application (method m_WriteData), and
transaction resource is freed.

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 41/46

Hereafter is an example of a MODBUS Server exchange.

 Figure 24: MODBUS server Diagram

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 42/46

General comments for a better understanding of the Server sequence diagram:

First step: a client has sent a query (MODBUS query) over the network.
The TCP/IP stack receives data (method m_EventOnSocket is implicitly called).

Second step: The query may be a connection request or not (method
m_IsConnexionRequest).
If the query is a connection request, the connection object and buffers for receiving
and sending the MODBUS frame are allocated (method m_GetObjectConnexion).
Just after, the connection access control must be checked and accepted (method
m_AcceptConnexion)

Third step: If the query is a MODBUS request, the complete MODBUS Query can be
read (method m_ReceiveData). At this time the MBAP must be analyzed (method
m_IsMdbHeaderCorrect). The complete frame is sent to the Server task via the
CinterfaceIndicationMessaging Class (method m_MODBUSIndication). Server task
receives the MODBUS Query (method m_ServerReceivingMessage) and analyses it.
If an error occurs (function code not supported, etc), a MODBUSException frame is
built (m_BuildMODBUSException), otherwise the response is built.

Fourth Step: The response is sent over the network via the
CinterfaceResponseMessaging (method m_MODBUSResponse). Treatment on the
connection object is done by the method m_SendData (retrieve the connection
descriptor, etc) and data is sent over the network.

5.4 CLASSES AND METHODS DESCRIPTION

5.4.1 MODBUS Server Class

Class CMODBUSServer

class CMODBUSServer

Stereotype implementationClass
Provides methods for managing MODBUS Messaging in Server Mode

Field Summary
GlobalState
state of the MODBUS Server

protected char

Constructor Summary
CMODBUSServer(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object

Method Summary

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 43/46

m_InitServerFunctions(void)
Function called by the constructor for filling array of functions
'm_ServerFunction'

protected void

m_Reset(void)
Method for Resetting Server, return true if reset

bool

m_ServerReceivingMessage(TItemConnexion * lnkMODBUS)
Interface with CindicationMsg::m_MODBUSIndication for receiving Query
from NetWork return negative value if problem

int

m_Start(void)
Method for Starting Server, return true if Started

bool

m_Stop(void)
Method for Stopping Server, return true if Stopped

bool

m_tServerMODBUS(void)
Server MODBUS task ...

protected void

5.4.2 MODBUS Client Class

Class CMODBUSClient

class CMODBUSClient
Provides methods for managing MODBUS Messaging in Client Mode

Stereotype implementationClass

Field Summary
protected

char
GlobalState
State of the MODBUS Client

Constructor Summary
CMODBUSClient(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object , initialize to 0 variables.

Method Summary
m_ClientReceivingMessage(TItemConnexion * lnkMODBUS)
Interface provided for receiving message from application Layer Typically :
Call CinterfaceUserApplication::m_Read for reading data call
CInterfaceConnexion::m_GetObjectConnexion for getting memory for a
transaction. Return negative value if problem

int

m_ClientReceivingResponse(TitemConnexion *
lnkTItemConnexion)
Interface with CindicationMsg::m_Confirmation for receiving response from
network return negative value if problem

int

m_Reset(void)
Method for Resetting component, return true if reset

bool

m_Start(void)
Method for Starting component, return true if started

bool

bool m_Stop(void)

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 44/46

Method for Stopping component, return true if stopped
m_tClientMODBUS(void)
Client MODBUS task....

protected void

5.4.3 Interface Classes

5.4.3.1 Interface Indication class

Class CInterfaceIndicationMsg

Direct Known Subclasses:

CConnexionMngt

class CInterfaceIndicationMsg
Class for sending message from TCP_Management to MODBUS Server or Client

Stereotype interface

Method Summary
m_MODBUSConfirmation(TItemConnexion * lnkObject)
Method for Receiving incoming Response, calling the Client : could be by
reference, by Message Queue, Remote procedure Call, ...

int

m_MODBUSIndication(TItemConnexion * lnkObject)
Method for reading incoming MODBUS Query and calling the Server : could
be by reference, by Message Queue, Remote procedure Call, ...

int

5.4.3.2 Interface Response Class

Class CInterfaceResponseMsg

Direct Known Subclasses:

CMODBUSClient, CMODBUSServer

class CInterfaceResponseMsg
Class for sending response or sending query to TCP_Management from Client or Server

Stereotype interface

Method Summary

TitemConnexion
*
m_GetMemoryConnexion(unsigned long IPDest)
Get an object ITemConnexion from memory pool. Return -1 if not enough
memory

int m_MODBUSRequest(TItemConnexion * lnkCMODBUS)
Method for Writing incoming MODBUS Query Client to ConnexionMngt :

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 45/46

could be by reference, by Message Queue, Remote procedure Call, ...
m_MODBUSResponse(TItemConnexion * lnkObject)
Method for writing Response from MODBUS Server to ConnexionMngt
could be by reference, by Message Queue, Remote procedure Call, ...

int

5.4.4 Connexion Management class

Class CConnexionMngt

class CConnexionMngt
Class that manages all TCP Connections

Stereotype implementationClass

Field Summary
protected

char
GlobalState
Global State of the Component ConnexionMngt
NbConnectionSupported
Global number of connections

Int

NbLocalConnection
Number of connections opened by the local Client to a remote Server

Int

NbRemoteConnection
Number of connections opened by a remote Client to the local Server

Int

Constructor Summary
CconnexionMngt(TConfigureObject * lnkConfigureObject)
Constructor : Create internal object , initialize to 0 variables.

Method Summary
m_EventOnSocket(void)
wake-up

int

m_IsConnectionAuthorized(unsigned long IPAddress)
Return true if new connection is authorized

bool

m_ReceiveData(TItemConnexion * lnkConnexion)
Interface with CTCPConnexion::write method for reading data from network
return negative value if problem

int

m_Reset(void)
Method for Resetting ConnectionMngt component return true if Reset

bool

m_SendData(TItemConnexion * lnkConnexion)
Interface with CTCPConnexion::read method for sending data to the
network Return negative value if problem

int

m_Start(void)
Method for Starting ConnectionMngt component return true if Started

bool

m_Stop(void)
Method for Stopping component return true if Stopped

bool

MODBUS Messaging on TCP/IP Implementation Guide V1.0b Modbus-IDA

October 24, 2006 http://www.Modbus-IDA.org 46/46

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 1/44
Dec 20, 2006

MODBUS over Serial Line

Specification and Implementation Guide

V1.02

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 2/44
Dec 20, 2006

Contents

 1 Introduction ..4
1.1 Scope of this document ... 4
1.2 Protocol overview... 5
1.3 Conventions ... 5
1.4 Compliance .. 6
1.5 Glossary... 6

2 MODBUS Data Link Layer ...7
2.1 MODBUS Master / Slaves protocol principle.............................. 7
2.2 MODBUS Addressing rules.. 8
2.3 MODBUS frame description... 8
2.4 Master / Slaves State Diagrams... 9
2.5 The two serial Transmission Modes... 12
2.6 Error Checking Methods .. 19

3 Physical Layer..20
3.1 Preamble.. 20
3.2 Data Signaling Rates ... 20
3.3 Electrical Interfaces.. 21
3.4 Multipoint System requirements... 27
3.5 Mechanical Interfaces .. 29
3.6 Cables.. 32
3.7 Visual Diagnosis .. 32

4 Installation and Documentation ...33
4.1 Installation.. 33
4.2 User Guide... 33

5 Implementation Classes ..34
6 Appendix ..35

6.1 Appendix A - Management of Serial Line Diagnostic Counters35
6.2 Appendix B - LRC/CRC Generation... 38
6.3 Appendix E - References ... 44

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 3/44
Dec 20, 2006

Document modifications
 Month-Year Modifications

1.0 Nov 02 Creation.
This document comprises a description of Master / slave protocol and of the two
different transmission modes (RTU, ASCII).
The main features of the physical layer (RS485, RS232) and some recommendations
are provided.
Implementation classes are proposed to guide the implementation.

1.01 Aug 30, 2006 Minor clarifications and correction of typos.

1.02 Dec 20, 2006 Minor clarifications and correction of typos.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 4/44
Dec 20, 2006

1 Introduction

1.1 Scope of this document
The MODBUS standard defines an application layer messaging protocol, positioned at level 7 of the OSI model that provides
"client/server" communications between devices connected on different types of buses or networks. It standardizes also a specific
protocol on serial line to exchange MODBUS request between a master and one or several slaves.
The objective of this document is to present the MODBUS protocol over serial line, in order to be used by all system designers when
they want to implement MODBUS protocol on their serial line products. Thus, this document will facilitate interoperability between
devices using the MODBUS protocol.
This document comes in complement to the document called "MODBUS Application Protocol Specification".
In chapter 5 different implementation classes are defined for "MODBUS Serial Line". Specification of a class is the sum of
requirements that a device must respect in order to belong to that class.

Figure 1: General overview of MODBUS documents

MODBUS
Application

Protocol
Specification

The MODBUS
application protocol

(OSI Level 7)

MODBUS over
Serial Line

Specification &
Implementation

Guide

Serial Line specification
(OSI Levels 1 & 2)

This
document

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 5/44
Dec 20, 2006

1.2 Protocol overview

This document describes the MODBUS over Serial Line protocol. MODBUS Serial Line protocol is a Master-Slave protocol. This
protocol takes place at level 2 of the OSI model.
A master-slave type system has one node (the master node) that issues explicit commands to one of the "slave" nodes and processes
responses. Slave nodes will not typically transmit data without a request from the master node, and do not communicate with other
slaves.
At the physical level, MODBUS over Serial Line systems may use different physical interfaces (RS485, RS232). TIA/EIA-485 (RS485)
Two-Wire interface is the most common. As an add-on option, RS485 Four-Wire interface may also be implemented. A TIA/EIA-232-
E (RS232) serial interface may also be used as an interface, when only short point to point communication is required. (see chapter
"Physical Layer")

The following figure gives a general representation of MODBUS serial communication stack compared to the 7 layers of the OSI
model.

Layer ISO/OSI Model

7 Application MODBUS Application Protocol

6 Presentation Empty

5 Session Empty

4 Transport Empty

3 Network Empty

2 Data Link MODBUS Serial Line Protocol

1 Physical EIA/TIA-485 (or EIA/TIA-232)

Figure 2: MODBUS Protocols and ISO/OSI Model

MODBUS application layer messaging protocol, positioned at level 7 of the OSI model, provides client/server communication between
devices connected on buses or networks. On MODBUS serial line the client role is provided by the Master of the serial bus and the
Slaves nodes act as servers.

1.3 Conventions

In this document, the following words are used to define the significance of each particular requirement.

! "MUST" / "REQUIRED"
All requirements containing the word "MUST" are mandatory. The word MUST, or the adjective "REQUIRED", means that the item is
an absolute requirement of the implementation. These words are underlined.

! "SHOULD" / "RECOMMENDED"
All recommendations containing the word "SHOULD", or the adjective “RECOMMENDED”, are considered desired behavior. These
recommendations should be used as a guideline when choosing between different options to implement functionality. There may be
valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully
weighed before choosing a different course. These words are underlined.

! "MAY" / "OPTIONAL"
The word “MAY”, or the adjective "OPTIONAL", means that this item is truly optional. One designer may choose to include the item
because a particular marketplace requires it or because it enhances the product, for example; another designer may omit the same
item.

EIA/TIA-485

(or EIA/TIA-232)

MODBUS Master / Slave

MODBUS Application
Layer

Client / server

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 6/44
Dec 20, 2006

1.4 Compliance

An implementation is not in conformity if it fails to satisfy one or more of the MUST requirements from its implementation class.
An implementation that satisfies all the MUST requirements and all the SHOULD recommendations is said to be "unconditionally
compliant".
One that satisfies all the MUST requirements but not all the SHOULD recommendations is said to be "conditionally compliant".

1.5 Glossary
Definition of particular words, symbols, and abbreviations used in this document.

2W The Two-Wire configuration defined in the “Electrical Interface” chapter, or one of its interfaces.

4W The Four-Wire configuration defined in the “Electrical Interface” chapter, or one of its interfaces.

AUI Attachment Unit Interface

AWG American Wire Gauge, a standard method denoting wire diameter; please see Appendix E - References.

Common The Signal Common in EIA/TIA Standards. In a 2W-or 4W-RS485 MODBUS Network, Signal and optional
Power Supply Common

DCE a MODBUS Device, for example a programmable controller adapter, which implements an RS232 Data
Circuit-terminating Equipment, also named Data Communication Equipment.

Device or “MODBUS device” : see this definition.

Driver Generator, or Transmitter.

DTE a MODBUS Device, for example a programming panel or a PC, which implements an RS232 Data
Terminal Equipment.

ITr Physical bus Interface on Trunk side.

IDv Physical bus Interface on Derivation (or tap or device drop) side.

LT Line Termination.

MODBUS Device a Device that implements MODBUS over Serial Line and respects this Technical Note.

RS232 EIA/ TIA -232 Standard.

RS485 EIA/ TIA -485 Standard.

RS485-MODBUS A 2W-or 4W-Network in accordance with this Technical Note.

Transceiver a Transmitter and a Receiver (or Driver and Receiver).

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 7/44
Dec 20, 2006

2 MODBUS Data Link Layer

2.1 MODBUS Master / Slaves protocol principle

The MODBUS Serial Line protocol is a Master-Slaves protocol. Only one master (at the same time) is connected to the bus, and one
or several (247 maximum number) slaves nodes are also connected to the same serial bus. A MODBUS communication is always
initiated by the master. The slave nodes will never transmit data without receiving a request from the master node. The slave nodes
will never communicate with each other. The master node initiates only one MODBUS transaction at the same time.

The master node issues a MODBUS request to the slave nodes in two modes :
" In unicast mode, the master addresses an individual slave. After receiving and processing the request, the slave returns a
message (a 'reply') to the master .
In that mode, a MODBUS transaction consists of 2 messages : a request from the master, and a reply from the slave.
Each slave must have an unique address (from 1 to 247) so that it can be addressed independently from other nodes.

" In broadcast mode, the master can send a request to all slaves.
No response is returned to broadcast requests sent by the master. The broadcast requests are necessarily writing commands. All
devices must accept the broadcast for writing function. The address 0 is reserved to identify a broadcast exchange.

slave slave slave

master

request

reply

Figure 3: Unicast mode

slave slave slave

master

request

Figure 4: Broadcast mode

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 8/44
Dec 20, 2006

2.2 MODBUS Addressing rules
The MODBUS addressing space comprises 256 different addresses.

0 From 1 to 247 From 248 to 255
Broadcast
address

Slave individual addresses Reserved

The Address 0 is reserved as the broadcast address. All slave nodes must recognise the broadcast address.

The MODBUS Master node has no specific address, only the slave nodes must have an address. This address must be unique on a
MODBUS serial bus.

2.3 MODBUS frame description

The MODBUS application protocol [1] defines a simple Protocol Data Unit (PDU) independent of the underlying communication layers:

Function code Data

MODBUS PDU

Figure 5: MODBUS Protocol Data Unit

The mapping of MODBUS protocol on a specific bus or network introduces some additional fields on the Protocol Data Unit. The
client that initiates a MODBUS transaction builds the MODBUS PDU, and then adds fields in order to build the appropriate
communication PDU.

Address field Function code Data CRC (or LRC)

MODBUS SERIAL LINE PDU

MODBUS PDU

Figure 6: MODBUS frame over Serial Line

! On MODBUS Serial Line, the Address field only contains the slave address.
As described in the previous section the valid slave nodes addresses are in the range of 0 – 247 decimal. The individual slave
devices are assigned addresses in the range of 1 – 247. A master addresses a slave by placing the slave address in the address field
of the message. When the slave returns its response, it places its own address in the response address field to let the master know
which slave is responding.

! The function code indicates to the server what kind of action to perform. The function code can be followed by a data field that

contains request and response parameters.

! Error checking field is the result of a "Redundancy Checking" calculation that is performed on the message contents. Two kinds

of calculation methods are used depending on the transmission mode that is being used (RTU or ASCII). (see 2.5 section, "The
two serial Transmission Modes")

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 9/44
Dec 20, 2006

2.4 Master / Slaves State Diagrams
The MODBUS data link layer comprises two separate sub layers :

• The Master / slave protocol

• The transmission mode (RTU vs ASCII modes)
The following sections describes the state diagrams of a master and a slave that are independent of transmission modes used.
The RTU and ASCII transmission modes are specified in next chapters using two state diagrams. The reception and the sending of a
frame are described.

Syntax of state diagram :

The following state diagrams are drawn in compliance with UML standard notations. The notation is briefly recalled below :

State_B

trigger [guard condition]
/ action

State_A

When a "trigger" event occurs in a system being in "State_A", system is going into "State_B", only if "guard condition" is true. An action "action" is then
performed.

2.4.1 Master State diagram

The following drawing explains the Master behavior :

Waiting
for reply

Idle

request sent to a
slave

/ response time-
out is started

Processing
reply

Reply reception [Expected slave]
/ response time-out is stopped

End of reply processing

Processing
error

Frame error

response time-out expiration

End of error processing

Waiting
turnaround

delay

Request sent in
broadcast mode

/ turnaround delay
is started

turnaround delay
expiration

Reply reception
 [Unexpected slave]

Figure 7: Master state diagram

Some explanations about the state diagram above :
! State "Idle" = no pending request. This is the initial state after power-up. A request can only be sent in "Idle" state. After sending

a request, the Master leaves the "Idle" state, and cannot send a second request at the same time
! When a unicast request is sent to a slave, the master goes into "Waiting for reply" state, and a “Response Time-out” is started. It

prevents the Master from staying indefinitely in "Waiting for reply" state. Value of the Response time-out is application
dependant.

! When a reply is received, the Master checks the reply before starting the data processing. The checking may result in an error,
for example a reply from an unexpected slave, or an error in the received frame. In case of a reply received from an unexpected
slave, the Response time-out is kept running. In case of an error detected on the frame, a retry may be performed.

! If no reply is received, the Response time-out expires, and an error is generated. Then the Master goes into "Idle" state, enabling
a retry of the request. The maximum number of retries depends on the master set-up.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 10/44
Dec 20, 2006

! When a broadcast request is sent on the serial bus, no response is returned from the slaves. Nevertheless a delay is respected
by the Master in order to allow any slave to process the current request before sending a new one. This delay is called
"Turnaround delay". Therefore the master goes into "Waiting Turnaround delay" state before going back in "idle" state and before
being able to send another request.

! In unicast the Response time out must be set long enough for any slave to process the request and return the response, in
broadcast the Turnaround delay must be long enough for any slave to process only the request and be able to receive a new one.
Therefore the Turnaround delay should be shorter than the Response time-out. Typically the Response time-out is from 1s to
several second at 9600 bps; and the Turnaround delay is from 100 ms to 200ms.

! Frame error consists of : 1) Parity checking applied to each character; 2) Redundancy checking applied to the entire frame. See
§2.6 "Error Checking Methods" for more explanations.

The state diagram is intentionally very simple. It does not take into account access to the line, message framing, or retry following
transmission error, etc … For more details about frame transmission, please refer to 2.5 paragraph, "The two serial Transmission
Modes".

2.4.2 Slave State Diagram

The following drawing explains the Slave behavior :

Checking
request

Idle

Processing
required action

normal reply sent

Formatting
error reply

error while processing

error in request data

error reply sent

Formatting
normal reply

check OK

end of processing [unicast mode]
end of processing
 [broadcast mode]

error in frame
checking, or

frame not
addressed to

this slave

reception of a
request

(from the master)

Figure 8: Slave state diagram

Some explanations about the above state diagram :
! State "Idle" = no pending request. This is the initial state after power-up.
! When a request is received, the slave checks the packet before performing the action requested in the packet. Different errors

may occur : format error in the request, invalid action, … In case of error, a reply must be sent to the master.
! Once the required action has been completed, a unicast message requires that a reply must be formatted and sent to the master.
! If the slave detects an error in the received frame, no respond is returned to the master.
! MODBUS diagnostics counters are defined and should be managed by any slave in order to provide diagnostic information.

These counters can be get using the Diagnostic MODBUS function (see Appendix A, and the MODBUS application protocol
specification [1]).

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 11/44
Dec 20, 2006

2.4.3 Master / Slave communication time diagram

This following figure shows the time diagram of 3 typical scenarios of Master / Slave communications.

REQUESTMaster

Reply analysis and
preparation of the
following exchange

WaitWait Wait

Slave 1

Slave N

Physical
line

BROADCAST REQUEST

REPLY

 NO
REPLY

Exchange i-1 Exchange i Exchange i+1

Time

Request
treatment

Simultaneous execution of
the order by the slaves

to slave 1 to slave N

Response time out

error

Error detection

Turnaround delay

Figure 9: Master / Slave scenario time diagram

Remarks :
! the duration of the REQUEST, REPLY, BROACAST phases depends on the communication features (frame length and

throughput).
! the duration of the WAIT and TREATMENT phases depends on the request processing time needed for the slave application.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 12/44
Dec 20, 2006

2.5 The two serial Transmission Modes
Two different serial transmission modes are defined : The RTU mode and the ASCII mode.
It defines the bit contents of message fields transmitted serially on the line. It determines how information is packed into the message
fields and decoded.
The transmission mode (and serial port parameters) must be the same for all devices on a MODBUS Serial Line.
Although the ASCII mode is required in some specific applications, interoperability between MODBUS devices can be reached only if
each device has the same transmission mode : All devices must implement the RTU Mode. The ASCII transmission mode is an
option.
Devices should be set up by the users to the desired transmission mode, RTU or ASCII. Default setup must be the RTU mode.

2.5.1 RTU Transmission Mode

When devices communicate on a MODBUS serial line using the RTU (Remote Terminal Unit) mode, each 8–bit byte in a message
contains two 4–bit hexadecimal characters. The main advantage of this mode is that its greater character density allows better data
throughput than ASCII mode for the same baud rate. Each message must be transmitted in a continuous stream of characters.

The format (11 bits) for each byte in RTU mode is :
Coding System: 8–bit binary
Bits per Byte: 1 start bit
 8 data bits, least significant bit sent first
 1 bit for parity completion
 1 stop bit

Even parity is required, other modes (odd parity, no parity) may also be used. In order to ensure a maximum compatibility with
other products, it is recommended to support also No parity mode. The default parity mode must be even parity.
Remark : the use of no parity requires 2 stop bits.

How Characters are Transmitted Serially :
Each character or byte is sent in this order (left to right):
Least Significant Bit (LSB) . . . Most Significant Bit (MSB)

Start

With Parity Checking

1 2 3 4 5 6 7 Par Stop8

Figure 10: Bit Sequence in RTU mode

Devices may accept by configuration either Even, Odd, or No Parity checking. If No Parity is implemented, an additional stop bit is
transmitted to fill out the character frame to a full 11-bit asynchronous character :

Start

Without Parity Checking

1 2 3 4 5 6 7 Stop Stop8

Figure 11: Bit Sequence in RTU mode (specific case of No Parity)

Frame Checking Field : Cyclical Redundancy Checking (CRC)

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 13/44
Dec 20, 2006

Frame description :

Slave
Address

Function
Code Data CRC

1 byte 1 byte 0 up to 252 byte(s) 2 bytes
CRC HiCRC Low

Figure 12: RTU Message Frame

" The maximum size of a MODBUS RTU frame is 256 bytes.

2.5.1.1 MODBUS Message RTU Framing

A MODBUS message is placed by the transmitting device into a frame that has a known beginning and ending point. This allows
devices that receive a new frame to begin at the start of the message, and to know when the message is completed. Partial
messages must be detected and errors must be set as a result.
In RTU mode, message frames are separated by a silent interval of at least 3.5 character times. In the following sections, this time
interval is called t3,5.

t0

at least 3.5 char

Frame 1 Frame 2

at least 3.5 char

Frame 3

4.5 char

3.5 char

Start Address Function Data CRC Check
≥ 3.5 char 8 bits 8 bits N x 8 bits 16 bits

End
≥ 3.5 char

MODBUS message

Figure 13: RTU Message Frame

The entire message frame must be transmitted as a continuous stream of characters.
If a silent interval of more than 1.5 character times occurs between two characters, the message frame is declared incomplete and
should be discarded by the receiver.

t0

≤ 1.5 char

Frame 1 OK Frame 2 NOK

> 1.5 char

Remark :
The implementation of RTU reception driver may imply the management of a lot of interruptions due to the t1.5 and t3.5 timers. With
high communication baud rates, this leads to a heavy CPU load. Consequently these two timers must be strictly respected when the
baud rate is equal or lower than 19200 Bps. For baud rates greater than 19200 Bps, fixed values for the 2 timers should be used: it is
recommended to use a value of 750µs for the inter-character time-out (t1.5) and a value of 1.750ms for inter-frame delay (t3.5).

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 14/44
Dec 20, 2006

The following drawing provides a description of the RTU transmission mode state diagram. Both "master" and "slave" points of view
are expressed in the same drawing :

Character received
/ flag = frame NOK

Emission

Reception

First character received
/ init. and start t1.5, t3.5

Emitted character
[if last emitted character]

/ init. and start t3.5

Demand of emission

Character received
 / init. and start t1.5, t3.5

t1.5 expired

Legend

t1.5, t3.5 : timers
t3.5 : 3.5 character times
t1.5 : 1.5 character times

Control and
Waiting

Initial State

t3.5 expired

Idle

/start t3.5 Comment
If frame OK
! processing frame
If frame NOK
! delete entire frame

Comment
control frame (CRC, Parity, Slave addr)

" flag = frame OK or NOK

t3.5 expired

t3.5 expired

Character received
 / init. and start t3.5

(ready to receive or to emit)

Figure 14: RTU transmission mode state diagram

Some explanations about the above state diagram:
! Transition from "Initial State" to "Idle" state needs t3.5 time-out expiration : that insures inter-frame delay
! "Idle" state is the normal state when neither emission nor reception is active.

! In RTU mode, the communication link is declared in "idle" state when there is no transmission activity after a time interval equal to
at least 3,5 characters.

! When the link is in idle state, each transmitted character detected on the link is identified as the start of a frame. The link goes to
the "active" state. Then, the end of frame is identified when no more character is transmitted on the link after the time interval
t3,5.

! After detection of the end of frame, the CRC calculation and checking is completed. Afterwards the address field is analysed to
determine if the frame is for the device. If not the frame is discarded. In order to reduce the reception processing time the
address field can be analysed as soon as it is received without waiting the end of frame. In this case the CRC will be calculated
and checked only if the frame is addressed to the slave (broadcast frame included).

2.5.1.2 CRC Checking

The RTU mode includes an error–checking field that is based on a Cyclical Redundancy Checking (CRC) method performed on the
message contents.
The CRC field checks the contents of the entire message. It is applied regardless of any parity checking method used for the
individual characters of the message.
The CRC field contains a 16–bit value implemented as two 8–bit bytes.
The CRC field is appended to the message as the last field in the message. When this is done, the low–order byte of the field is
appended first, followed by the high–order byte. The CRC high–order byte is the last byte to be sent in the message.
The CRC value is calculated by the sending device, which appends the CRC to the message. The receiving device recalculates a
CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two
values are not equal, an error results.
The CRC calculation is started by first pre-loading a 16–bit register to all 1’s. Then a process begins of applying successive 8–bit
bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the
CRC. Start and stop bits and the parity bit, do not apply to the CRC.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 15/44
Dec 20, 2006

During generation of the CRC, each 8–bit character is exclusive ORed with the register contents. Then the result is shifted in the
direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and
examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes
place.
This process is repeated until eight shifts have been performed. After the last (eight) shift, the next 8–bit byte is exclusive ORed with
the register’s current value, and the process repeats for eight more shifts as described above. The final content of the register, after all
the bytes of the message have been applied, is the CRC value.
When the CRC is appended to the message, the low-order byte is appended first, followed by the high-order byte. A detailed example
of CRC generation is contained in Appendix B.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 16/44
Dec 20, 2006

2.5.2 The ASCII Transmission Mode

When devices are setup to communicate on a MODBUS serial line using ASCII (American Standard Code for Information
Interchange) mode, each 8–bit byte in a message is sent as two ASCII characters. This mode is used when the physical
communication link or the capabilities of the device does not allow the conformance with RTU mode requirements regarding timers
management.
Remark : this mode is less efficient than RTU since each byte needs two characters.
" Example : The byte 0X5B is encoded as two characters : 0x35 and 0x42 (0x35 ="5", and 0x42 ="B" in ASCII).

The format (10 bits) for each byte in ASCII mode is :
Coding System: Hexadecimal, ASCII characters 0–9, A–F
 One hexadecimal character contains 4-bits of data within each ASCII character of the message
Bits per Byte: 1 start bit
 7 data bits, least significant bit sent first
 1 bit for parity completion;
 1 stop bit

Even parity is required, other modes (odd parity, no parity) may also be used. In order to ensure a maximum compatibility with
other products, it is recommended to support also No parity mode. The default parity mode must be Even parity.
Remark : the use of no parity requires 2 stop bits.

How Characters are Transmitted Serially :
Each character or byte is sent in this order (left to right):
Least Significant Bit (LSB) . . . Most Significant Bit (MSB)

Start

With Parity Checking

1 2 3 4 5 6 7 Par Stop

Figure 15: Bit Sequence in ASCII mode

Devices may accept by configuration either Even, Odd, or No Parity checking. If No Parity is implemented, an additional stop bit is
transmitted to fill out the character frame :

Start

Without Parity Checking

1 2 3 4 5 6 7 Stop Stop

Figure 16: Bit Sequence in ASCII mode (specific case of No Parity)

Frame Checking Field: Longitudinal Redundancy Checking (LRC)

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 17/44
Dec 20, 2006

2.5.2.1 MODBUS Message ASCII Framing

A MODBUS message is placed by the transmitting device into a frame that has a known beginning and ending point. This allows
devices that receive a new frame to begin at the start of the message, and to know when the message is completed. Partial
messages must be detected and errors must be set as a result.
The address field of a message frame contains two characters.
In ASCII mode, a message is delimited by specific characters as Start-of-frames and End-of-frames. A message must start with a
‘colon’ (:) character (ASCII 3A hex), and end with a ‘carriage return – line feed’ (CRLF) pair (ASCII 0D and 0A hex).
Remark : The LF character can be changed using a specific MODBUS application command (see MODBUS application protocol
specification).
The allowable characters transmitted for all other fields are hexadecimal 0–9, A–F (ASCII coded). The devices monitor the bus
continuously for the ‘colon’ character. When this character is received, each device decodes the next character until it detects the
End-Of-Frame.
Intervals of up to one second may elapse between characters within the message. Unless the user has configured a longer timeout,
an interval greater than 1 second means an error has occurred. Some Wide-Area-Network application may require a timeout in the 4
to 5 second range.
A typical message frame is shown below.

Start Address Function Data LRC End
1 char

:
2 chars 2 chars 2 chars 2 chars

CR,LF
0 up to 2x252 char(s)

Figure 17: ASCII Message Frame

Remark : Each data byte needs two characters for encoding. Thus, to ensure compatibility at MODBUS application level between
ASCII mode and RTU mode, the maximum data size for ASCII data field (2x252) is the double the maximum data size for RTU data
field (252). Consequently, the maximum size of a MODBUS ASCII frame is 513 characters.

The ASCII framing requirements are synthesized in the following state diagram. Both "master" and "slave" points of view are
expressed in the same drawing :

Reception

Reception of ":"
character Reception of character

 / Concatenation of
character into

reception buffer

Waiting "End
of Frame"

Idle

Comment
If frame OK
! processing frame
If frame NOK
! delete entire frame

(ready to receive or to emit)

Reception of "LF" character
/ control frame (LRC, Parity,

Slave addr.)

Reception of ":"
character / Empty

reception buffer

Reception of "CR"
character

Reception of ":"
character / Empty

reception buffer

Emission
start

Emission Demand

Emission

Sending of “:”

Sending of
all characters

Emission End

Sending of “CR”

Sending of “LF”

Figure 18: ASCII Transmission mode State diagram

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 18/44
Dec 20, 2006

Some explanations about the above state diagram :
! "Idle" state is the normal state when neither emission nor reception is active.
! Each reception of a ":" character means a beginning of a new message. If a message was in process of reception while receiving

such a character, the current message is declared incomplete and it is discarded. A new reception buffer is then allocated.
! After detection of the end of frame, the LRC calculation and checking is completed. Afterwards the address field is analyzed to

determine if the frame is for the device. If not the frame is discarded. In order to reduce the reception processing time the
address field can be analyzed as soon as it is reserved without waiting the end of frame.

2.5.2.2 LRC Checking

In ASCII mode, messages include an error–checking field that is based on a Longitudinal Redundancy Checking (LRC) calculation
that is performed on the message contents, exclusive of the beginning ‘colon’ and terminating CRLF pair characters. It is applied
regardless of any parity checking method used for the individual characters of the message.
The LRC field is one byte, containing an 8–bit binary value. The LRC value is calculated by the device that emits, which appends the
LRC to the message. The device that receives calculates an LRC during receipt of the message, and compares the calculated value
to the actual value it received in the LRC field. If the two values are not equal, an error results.
The LRC is calculated by adding together successive 8–bit bytes of the message, discarding any carries, and then two’s
complementing the result. It is performed on the bytes of the message, before the encoding of each byte in the two ASCII
characters corresponding to the hexadecimal representation of each nibble. The computation does not include the 'colon' character
that begins the message, and does not include the CRLF pair at the end of the message.
The resulting LRC is ASCII encoded into two bytes and placed at the end of the ASCII mode frame before the CRLF.
A detailed example of LRC generation is contained in Appendix B.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 19/44
Dec 20, 2006

2.6 Error Checking Methods
The security of standard MODBUS Serial Line is based on two kinds of error checking :
! Parity checking (even or odd) should be applied to each character.
! Frame checking (LRC or CRC) must be applied to the entire message.
Both the character checking and message frame checking are generated in the device (master or slave) that emits and applied to the
message contents before transmission. The device (slave or master) checks each character and the entire message frame during
receipt.
The master is configured by the user to wait for a predetermined timeout interval (Response time-out) before aborting the transaction.
This interval is set to be long enough for any slave to respond normally (unicast request). If the slave detects a transmission error, the
message will not be acted upon. The slave will not construct a response to the master. Thus the timeout will expire and allow the
master’s program to handle the error. Note that a message addressed to a nonexistent slave device will also cause a timeout.

2.6.1 Parity Checking

Users may configure devices for Even (required) or Odd Parity checking, or for No Parity checking (recommended). This will
determine how the parity bit will be set in each character.
If either Even or Odd Parity is specified, the quantity of 1 bits will be counted in the data portion of each character (seven data bits for
ASCII mode, or eight for RTU). The parity bit will then be set to a 0 or 1 to result in an Even or Odd total of 1 bits.
For example, these eight data bits are contained in an RTU character frame:

1100 0101

The total quantity of 1 bits in the frame is four. If Even Parity is used, the frame’s parity bit will be a 0, making the total quantity of 1 bits
still an even number (four). If Odd Parity is used, the parity bit will be a 1, making an odd quantity (five).
When the message is transmitted, the parity bit is calculated and applied to the frame of each character. The device that receives
counts the quantity of 1 bits and sets an error if they are not the same as configured for that device (all devices on the MODBUS Serial
Line must be configured to use the same parity checking method).
Note that parity checking can only detect an error if an odd number of bits are picked up or dropped in a character frame during
transmission. For example, if Odd Parity checking is employed, and two 1 bits are dropped from a character containing three 1 bits,
the result is still an odd count of 1 bits.
If No Parity checking is specified, no parity bit is transmitted and no parity checking can be made. An additional stop bit is transmitted
to fill out the character frame.

2.6.2 Frame Checking

Two kinds of frame checking is used depending on the transmission mode, RTU or ASCII.
! In RTU mode, messages include an error–checking field that is based on a Cyclical Redundancy Checking (CRC) method. The

CRC field checks the contents of the entire message. It is applied regardless of any parity checking method used for the individual
characters of the message.

! In ASCII mode, messages include an error–checking field that is based on a Longitudinal Redundancy Checking (LRC) method.
The LRC field checks the contents of the message, exclusive of the beginning ‘colon’ and ending CRLF pair. It is applied
regardless of any parity checking method used for the individual characters of the message.

The detailed information about error checking methods is contained in the previous sections.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 20/44
Dec 20, 2006

3 Physical Layer

3.1 Preamble

A new MODBUS solution over serial line should implement an electrical interface in accordance with EIA/TIA-485 standard (also
known as RS485 standard). This standard allows point to point and multipoint systems, in a “two-wire configuration”. In addition, some
devices may implement a “Four-Wire” RS485-Interface.
A device may also implement an RS232-Interface.

In such a MODBUS system, a Master Device and one or several Slave Devices communicate on a passive serial line.

On standard MODBUS system, all the devices are connected (in parallel) on a trunk cable constituted by 3 conductors. Two of those
conductors (the “Two-Wire” configuration) form a balanced twisted pair, on which bi-directional data are transmitted, typically at the
bit rate of 9600 bits per second.

Each device may be connected (see figure 19):
- either directly on the trunk cable, forming a daisy-chain,
- either on a passive Tap with a derivation cable,
- either on an active Tap with a specific cable.

Screw Terminals, RJ45, or D-shell 9 connectors may be used on devices to connect cables (see the chapter “Mechanical Interfaces”).

3.2 Data Signaling Rates

9600 bps and 19.2 Kbps are required and 19.2 is the required default

Other baud rates may optionally be implemented : 1200, 2400, 4800, … 38400 bps, 56 Kbps, 115 Kbps, …

Every implemented baud rate must be respected better than 1% in transmission situation, and must accept an error of 2% in reception
situation.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 21/44
Dec 20, 2006

3.3 Electrical Interfaces

3.3.1 Multipoint Serial Bus Infrastructure

Figure 19 gives a general overview of the serial bus infrastructure in a MODBUS multipoint Serial Line system.

Slave n

D
R

ITr

LTITr

ITr

LT

Passive TAP

IDv

Slave 1

D
R

Master

IDv

D
R

ActiveTap

AUI

Slave 2

D
R Passive TAP

Figure 19 : Serial bus infrastructure

A multipoint MODBUS Serial Line bus is made of a principal cable (the Trunk), and possibly some derivation cables.
Line terminations are necessary at each extremity of the trunk cable for impedance adaptation (see § "Two-Wire MODBUS Definition"
& "Optional Four-Wire MODBUS Definition" for details).

As shown in figure 19, different implementations may operate in the same MODBUS Serial Line system :

! the device integrates the communication transceiver and is connected to the trunk using a Passive Tap and a derivation cable
(case of Slave 1 and Master) ;

! the device doesn't integrate the communication transceiver and is connected to the trunk using an Active Tap and a derivation
cable (the active TAP integrates the transceiver)
(case of Slave 2) ;

! the device is connected directly to the trunk cable, in a Daisy-Chain (case of Slave n)

The following conventions are adopted :

! The interface with the trunk is named ITr (Trunk Interface)

! The interface between the device and the Passive Tap is named IDv (Derivation Interface)

! The interface between the device and the Active Tap is named AUI (Attachment Unit Interface)

Remarks :

1. In some cases, the Tap may be connected directly to the IDv-socket or the AUI-socket of the device, without using a derivation
cable.

2. A Tap may have several IDv sockets to connect several devices. Such a Tap is named Distributor when it is a passive one.
3. When using an active Tap, power supply of the Tap may be provided either via its AUI or ITr interface.

ITr and IDv interfaces are described in the following chapters (see § "Two-Wire MODBUS DEFINITION" & "Four-Wire MODBUS
DEFINITION").

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 22/44
Dec 20, 2006

3.3.2 Two-Wire MODBUS Definition

A MODBUS solution over serial line should implement a “Two-Wire” electrical interface in accordance with EIA/TIA-485 standard.

On such a 2W-bus, at any time one driver only has the right for transmitting.

In fact a third conductor must also interconnect all the devices of the bus : the common.

Pull Up

5 V

Pull Down
Common

D
R

Master

D
R

Slave 1 Slave n

D1

D0

D
R

LTLT Balanced Pair

Figure 20: General 2-Wire Topology

2W-MODBUS Circuits Definition

Required Circuits

on ITr on IDv
For

device
Required
on device

EIA/TIA-485
name Description

D1 D1 I/O X B/B’
Transceiver terminal 1, V1 Voltage
(V1 > V0 for binary 1 [OFF] state)

D0 D0 I/O X A/A’
Transceiver terminal 0, V0 Voltage

(V0 > V1 for binary 0 [ON] state)
Common Common -- X C/C’ Signal and optional Power Supply Common

Notes :

• For Line Termination (LT), Pull Up and Pull Down resistors, please refer to section “Multipoint System requirements".

• D0, D1, and Common circuit names must be used in the documentation related to the device and the Tap (User Guide, Cabling
Guide, …) to facilitate interoperability.

• Optional electrical interfaces may be added, for example :
! Power Supply : 5..24 V D.C.
! Port mode control : PMC circuit (TTL compatible). When needed, port mode may be controlled either by this external

circuit and/or by another way (a switch on the device for example). In the first case while an open circuit PMC will ask for the
2W-MODBUS mode, a Low level on PMC will switch the port into 4W-MODBUS or RS232-MODBUS Mode, depending on the
implementation.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 23/44
Dec 20, 2006

3.3.3 Optional Four-Wire MODBUS Definition

Optionally, such MODBUS devices also permit to implement a 2-pair bus (4 wires) of mono directional data. The data on the master
pair (RXD1-RXD0) are only received by the slaves ; the data on the slave pair (TXD1-TXD0) are only received by the only master.

In fact a fifth conductor must also interconnect all the devices of the 4W-bus : the common.

In the same way as on a 2W-MODBUS, at any time one driver only has the right for emitting.

Such a device must implement, for each balanced pair, a driver and a transceiver in accordance with EIA/ TIA-485.
(Sometimes this solution has been named “RS422”, which is not correct : the RS422 standard does not support several drivers on
one balanced pair.)

C o m m o n

D
R

S la v e 1 S la v e n

T X D 0

D
R

T X D 1

5 V

L T

D
R

M a s te r

R X D 1

R X D 0

L T

5 V

L T

L T

P u ll D o w n

P u ll U p

P u ll D o w n

P u ll U p

M a s te r P a ir

S la v e P a ir

Figure 21: General 4-wire topology

Optional 4W-MODBUS Circuits Definition

Required Circuits

on ITr on IDv
For

device
Required
on device

EIA/TIA-485
name Description for IDv

TXD1 TXD1 Out X B
Generator terminal 1, Vb Voltage

(Vb > Va for binary 1 [OFF] state)

TXD0 TXD0 Out X A
Generator terminal 0, Va Voltage

(Va > Vb for binary 0 [ON] state)

RXD1 RXD1 In (1) B’
Receiver terminal 1, Vb’ Voltage

(Vb’ > Va’ for binary 1 [OFF] state)

RXD0 RXD0 In (1) A’ Receiver terminal 0, Va’ Voltage
(Va’ > Vb’ for binary 0 [ON] state)

Common Common -- X C/C’ Signal and optional Power Supply Common

Notes :

• For Line Termination (LT), Pull Up and Pull Down resistors, please refer to section “Multipoint System requirements".

• Those circuits (1) are required only if an 4W-MODBUS option is implemented.

• The name of the 5 required circuits must be used in the documentation related to the device and the Tap (User Guide, Cabling
Guide, …) to facilitate interoperability.

• Optional electrical interfaces may be added, for example :
! Power Supply : 5..24 V D.C.
! PMC circuit : See above (In 2W-MODBUS Circuits Definition) the note about this optional circuit.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 24/44
Dec 20, 2006

3.3.3.1 4W-Cabling System Important Topic

In such a 4W-MODBUS, Master Device and Slave Devices have IDv interfaces with the same 5 required circuits.
As the master has to :
- receive from the slave the data on the slave pair (TXD1-TXD0),
- and transmit on the master pair (RXD1-RXD0 , received by the slaves) ,
the 4W-cabling system must cross the two pairs of the bus between ITr and the IDv of the master :

Signal on Master IDv

Name Type

EIA/TIA-485
 Name

Circuit on ITr

 RXD1 In B’ TXD1

Slave Pair

RXD0 In A’ TXD0

 TXD1 Out B RXD1

Master Pair

TXD0 Out A RXD0

 Common -- C/C’ Common

This crossing may be implemented by crossed cables, but the connection of such crossed cables in a 2-wire system may cause
damages. To connect a 4W master device (which have a MODBUS connector) a better solution is to use a Tap which includes the
crossing function.

3.3.3.2 Compatibility between 4-Wire and 2-Wire cabling

In order to connect devices implementing a 2-Wire physical interface to an already existing 4-Wire system, the 4-Wire cabling system
can be modified as described below :
! TxD0 signal shall be wired with the RxD0 signal, turning them to the D0 signal
! TxD1 signal shall be wired with the RxD1 signal, turning them to the D1 signal.
! Pull-up, Pull-down and line terminations resistors shall be re-arranged to correctly adapt the D0, D1 signals.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 25/44
Dec 20, 2006

The figure hereafter gives an example where slaves 2 and 3 which use a 2-Wire interface can operate with the Master and the slave 1
which use a 4-Wire interface.

C o m m o n

D
R

S la v e 1

T X D 0

T X D 1

D
R

M a s te r

R X D 1

R X D 0

5 V

L T

L T

P u ll D o w n

P u ll U p

S la v e 2

D
R

S la v e 3

D
R

Figure 22 : Changing a 4-Wire cabling system into a 2-Wire cabling system

In order to connect devices implementing a 4-Wire physical interface to an already existing 2-Wire system, the 4-Wire interface of the
new coming devices can be arranged as describe below :
On each 4-Wire device interface :
! TxD0 signal shall be wired with the RxD0 signal and then connected to the D0 signal of the trunk ;
! TxD1 signal shall be wired with the RxD1 signal and then connected to the D1 signal of the trunk.

The figure hereafter gives an example where slaves 2 and 3 which use a 4-Wire interface can operate with the Master and the slave 1
which use a 2-Wire interface.

Pull Up

5 V

Pull Down
Common

D
R

Slave 1

D1

D0

LTLT

D
R

Master

Balanced Pair

D
R

Slave 2

D
R

Slave 3

Figure 23 : Connecting devices with 4-Wire interface to a 2-Wire cabling system

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 26/44
Dec 20, 2006

3.3.4 RS232-MODBUS Definition

Some devices may implement an RS232-Interface between a DCE and a DTE.

Optional RS232-MODBUS Circuits Definition

Signal For DCE Required
on DCE (1)

Required
on DTE (1) Description

Common -- X X Signal Common
CTS In Clear to Send

DCD -- Data Carrier Detected (from DCE to DTE)

DSR In Data Set Ready

DTR Out Data Terminal Ready

RTS Out Request to Send

RXD In X X Received Data
TXD Out X X Transmitted Data

Notes :

• “X” marked signals are required only if an RS232-MODBUS option is implemented.

• Signals are in accordance with EIA/ TIA-232.

• Each TXD must be wired with RXD of the other device ;

• RTS may be wired with CTS of the other device,

• DTR may be wired with DSR of the other device.

• Optional electrical interfaces may be added, for example :
! Power Supply : 5..24 V D.C.
! PMC circuit : See above (In 2W-MODBUS Circuits Definition) the note about this optional circuit.

3.3.5 RS232-MODBUS requirements

This optional MODBUS on Serial Line system should only be used for short length (typically less than 20m) point to point inter-
connection.

Then, the EIA/TIA-232 standard must be respected :

⇒ circuits definition,

⇒ maximum wire capacitance to ground (2500 pF, then 25 m for a 100 pF/m cable).

Please refer to chapter “Cables” for the shield, and for the possibility to use Category 5 Cables.

Documentation of the device must indicate :

⇒ if the device must be considered as a DCE either as a DTE,

⇒ how optional circuits must work if such is the case.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 27/44
Dec 20, 2006

3.4 Multipoint System requirements

For any EIA/ TIA-485 multipoint system, in either 2-wire or 4-wire configuration, the following requirements all apply.

3.4.1 Maximum number of devices without repeater

A figure of 32 devices is always authorized on any RS485-MODBUS system without repeater.

Depending of :

- all the possible addresses,
- the figure of RS485 Unit Load used by the devices,
- and the line polarization in need be,
A RS485 system may implement a larger number of devices. Some devices allow the implementation of a RS485-MODBUS serial line
with more than 32 devices, without repeater.
In this case these MODBUS devices must be documented to say how many of such devices are authorized without repeater.
The use of a repeater between two heavy loaded RS485-MODBUS is also possible.

3.4.2 Topology

An RS485-MODBUS configuration without repeater has one trunk cable, along which devices are connected, directly (daisy chaining)
or by short derivation cables.
The trunk cable, also named “Bus”, can be long (see hereafter). Its two ends must be connected on Line Terminations.
The use of repeaters between several RS485-MODBUS is also possible.

3.4.3 Length

The end to end length of the trunk cable must be limited. The maximum length depends on the baud rate, the cable (Gauge,
Capacitance or Characteristic Impedance), the number of loads on the daisy chain, and the network configuration (2-wire or 4-wire).
For a maximum 9600 Baud Rate and AWG26 (or wider) gauge, the maximum length is 1000m. In the specific case shown in the figure
22 (4 Wire cabling used as a 2 Wire cabling system) the maximum length must be divided by two.

The derivations must be short, never more than 20m. If a multi-port tap is used with n derivations, each one must respect a maximum
length of 40m divided by n.

3.4.4 Grounding Arrangements

The « Common » circuit (Signal and optional Power Supply Common) must be connected directly to protective ground, preferably at
one point only for the entire bus. Generally this point is to choose on the master device or on its Tap.

3.4.5 Line Termination

A reflection in a transmission line is the result of an impedance discontinuity that a travelling wave sees as it propagates down the line.
To minimize the reflections from the end of the RS485-cable it is required to place a Line Termination near each of the 2 Ends of the
Bus.

It is important that the line be terminated at both ends since the propagation is bi-directional, but it is not allowed to place more than 2
LT on one passive D0-D1 balanced pair . Never place any LT on a derivation cable.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 28/44
Dec 20, 2006

Each line termination must be connected between the two conductors of the balanced line : D0 and D1.

Line termination may be a 150 ohms value (0.5 W) resistor.

A serial capacitor (1 nF, 10 V minimum) with a 120 Ohms (0.25 W) resistor is a better choice when a polarization of the pair must
be implemented (see here after).

In a 4W-system, each pair must be terminated at each end of the bus.

In an RS232 interconnections, no termination should be wired.

3.4.6 Line Polarization

When there is no data activity on an RS-485 balanced pair, the lines are not driven and, thus susceptible to external noise or
interference. To insure that its receiver stays in a constant state, when no data signal is present, some devices need to bias the
network.

Each MODBUS device must be documented to say :
- if the device needs a line polarization,
- if the device implements, or can implement, such a line polarization.

If one or several devices need polarization, one pair of resistors must be connected on the RS-485 balanced pair :
- a Pull-Up Resistor to a 5V Voltage on D1 circuit,
- a Pull-Down Resistor to the common circuit on D0 circuit.
The value of those resistors must be between 450 Ohms and 650 Ohms. 650 Ohms resistors value may allow a higher number of
devices on the serial line bus.

In this case, a polarization of the pair must be implemented at one location for the whole Serial Bus. Generally this point is to
choose on the master device or on its Tap. Other devices must not implement any polarization.

The maximum number of devices authorized on such a MODBUS Serial Line is reduced by 4 from a MODBUS without polarization.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 29/44
Dec 20, 2006

3.5 Mechanical Interfaces

Screw Terminals may be used for both IDv and ITr connections. All information must be provided to the users about the exact
location of each signal, with names in accordance with the previous chapter “Electrical Interface”.

If a RJ45 (or a mini-DIN or a D-Shell) connector is used on an equipment for a MODBUS mechanical interface, a shielded female
connector must be chosen. Then the cable-end must have a shielded male connector.

3.5.1 Connectors pin-out for 2W-MODBUS

Device side - female connector

D0
D1

Common

Figure 24: 2W- MODBUS on RJ45 connector (required pin-out)

Male (Front view)

1 2 3 4 5

6 7 8 9

Female (Front view)

5 4 3 2 1

9 8 7 6

Figure 25: D-shell 9-pin connector

Screw type connectors can also be used.

If an RJ45 or a 9-pin D-shell connector is used for a standard MODBUS device, the pinouts hereafter must be respected for every
implemented circuit.

2W-MODBUS RJ45 and 9-pin D-shell Pinouts

Pin on
RJ45

Pin on
D9-shell

Level of
requirement

IDv
Circuit

ITr
Circuit

EIA/TIA-
485 name Description for IDv

3 3 optional PMC -- -- Port Mode Control

4 5 required D1 D1 B/B’
Transceiver terminal 1, V1 Voltage
(V1 > V0 for binary 1 [OFF] state)

5 9 required D0 D0 A/A’
Transceiver terminal 0, V0 Voltage
(V0 > V1 for binary 0 [ON] state)

7 2 recommended VP -- -- Positive 5...24 V D.C. Power Supply

8 1 required Common Common C/C’ Signal and Power Supply Common

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 30/44
Dec 20, 2006

3.5.2 Connectors pin-out for optional 4W-MODBUS

Device side - female connector

Figure 26: 4W- MODBUS on RJ45 connector (required pin-out)

Male (Front view)

1 2 3 4 5

6 7 8 9

Female (Front view)

5 4 3 2 1

9 8 7 6

Figure 27: D-shell 9-pin connector

Screw type connectors can also be used.

If an RJ45 or a 9-pin D-shell connector is used for a 4W-MODBUS device, the pinouts hereafter must be respected for every
implemented circuit.

Optional 4W-MODBUS RJ45 and 9-pin D-shell Pinouts

Pin on
RJ45

Pin on
D9-shell

Level of
requirement

IDv
Signal

ITr
Signal

EIA/TIA-
485 name Description for IDv

1 8 required RXD0 RXD0 A’
Receiver terminal 0, Va’ Voltage
(Va’ > Vb’ for binary 0 [ON] state)

2 4 required RXD1 RXD1 B’
Receiver terminal 1, Vb’ Voltage
(Vb’ > Va’ for binary 1 [OFF] state)

3 3 optional PMC -- -- Port Mode Control

4 5 required TXD1 TXD1 B
Generator terminal 1, Vb Voltage
(Vb > Va for binary 1 [OFF] state)

5 9 required TXD0 TXD0 A
Generator terminal 0, Va Voltage
(Va > Vb for binary 0 [ON] state)

7 2 recommended VP -- -- Positive 5...24 V DC Power Supply

8 1 required Common Common C/C’ Signal and Power Supply Common

Note : When both 2 and 4-Wire configurations are implemented on the same port, the 4W notations must be used.

Common

TXD0
TXD1

RXD1
RXD0

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 31/44
Dec 20, 2006

3.5.3 RJ45 and 9-pin D-shell Pinouts for optional RS232-MODBUS

If an RJ45 or a 9-pin D-shell connector is used for a RS232-MODBUS device, the pinouts hereafter must be respected for every
implemented circuit.

DCE

Underlined pins can be output
 Circuit

DTE
Underlined pins can be output

Pin on
RJ45

Pin on
D9-shell

Level of
requirement

Name Description
RS232
Source

Level of
requirement

Pin on
RJ45

Pin on D9-
shell

1 2 required TXD Transmitted Data DTE required 2 3

2 3 required RXD Received Data DCE required 1 2

3 7 optional CTS Clear to Send DCE optional 6 8

6 8 optional RTS Request to Send DTE optional 3 7

8 5 required Common Signal Common -- required 8 5

Important Note : Some DCE Pinouts are crossed with DTE Pinouts with the same name :

A directly pin to pin wired cable (without any crossing) must be used between one DTE
(a PC for example) and a DCE (a PLC for example).

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 32/44
Dec 20, 2006

3.6 Cables

A MODBUS over Serial Line Cable must be shielded. At one end of each cable its shield must be connected to protective ground. If
a connector is used at this end, the shell of the connector is connected to the shield of the cable.

An RS485-MODBUS must use a balanced pair (for D0-D1) and a third wire (for the Common). In addition to that a second balanced
pair must be used in a 4W-MODBUS system (for RXD0-RXD1).

If a connectorized 4 pairs Category 5 Cable is used, please remember to the user in the User Guides :
“Connection of a crossed cable in a 2-wire MODBUS system may cause damages”.

To minimize errors in cabling, a Color Code is recommended for the wires in the RS485-MODBUS Cables :

 Signal Names Recommended Color

 D1-TXD1 yellow
 D0-TXD0 brown
 Common grey

4W (Optional) RXD0 white
4W (Optional) RXD1 blue

Figure 28: Color code for RS485-MODBUS wires

Note : Category 5 Cables use other colors.

For RS485-MODBUS, Wire Gauge must be chosen sufficiently wide to permit the maximum length (1000 m). AWG 24 is always
sufficient for the MODBUS Data.

Category 5 cables may operate for RS485-MODBUS, to a maximum length of 600m.

For the balanced pairs used in an RS485-system, a Characteristic Impedance with a value higher than 100 Ohms may be preferred,
especially for 19200 and higher baud rates.

3.7 Visual Diagnosis
For a visual diagnosis, communication status and device status must be indicated by LEDs :

LED Level of requirement State Recommended colour

Communication required Switched ON during frame reception or sending.

(2 LEDs for frame reception and frame sending, or 1 LED
for both purposes.)

Yellow

Error recommended Switched ON : internal fault

Flashing : Other faults (Communication fault or
configuration error)

Red

Device status optional Switched ON : device powered Green

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 33/44
Dec 20, 2006

4 Installation and Documentation

4.1 Installation

Product vendor should pay attention to give to the user of a MODBUS System or MODBUS Devices all useful information to
prevent them from any error in cabling or bad utilization of cabling accessories :
- Some other Fieldbuses, CANopen for example, use the same connector types (D-shell, RJ45…) .
- Studies are conducted on Ethernet, with power supply on the same Balanced Pairs Cable.
- Some Products use for I/O circuits the same connector types (D-shell, RJ45…).

On these connectors, for the most part, no foolproofing is available (polarizing notch or other implementation) .

4.2 User Guide
The User Guide of any MODBUS Device or Cabling System Component must include in a non exhaustive manner one or two types of
information:

4.2.1 For any MODBUS Product :

The following information should be documented :
! All the implemented requests.
! The operating modes.
! The visual diagnostics.
! The reachable registers and supported function codes.
! Installation rules.

! The required information in the following sections should also be documented :

⇒ "Two-Wire MODBUS Definition" (to mention the Required Circuits) ;

⇒ "Optional Four-Wire MODBUS Definition" (to mention the Required Circuits) ;

⇒ "Line Polarization" (to mention a possible Need or an Implementation) ;

⇒ "Cables" (special care of crossed cables).

! A specific indication relating to the devices addresses, is to be written in the form of an important warning :

"It is of great importance to ensure at the time of the procedure of devices addressing, that there is not two devices with the same
address. In such a case, an abnormal behavior of the whole serial bus can occur, the Master being then in the impossibility to
communicate with all present slaves on the bus."

! A "Getting Started" chapter is highly recommended, with the documented description of a typical application example, for an

easy start.

4.2.2 For a MODBUS Product with implemented Options :

The different optional parameters must be clearly detailed :

⇒ Optional serial Transmission mode ;
⇒ Optional Parity Checking ;
⇒ Optional Baud Rates ;
⇒ Optional Circuit(s) : Power Supply, Port Configuration ;
⇒ Optional Interface(s) ;
⇒ Maximum number of devices (without repeater) if greater than 32.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 34/44
Dec 20, 2006

5 Implementation Classes

Each device on a MODBUS Serial Line must respect all the mandatory requirements of a same implementation class.
The following parameters are used to classify the MODBUS Serial Line devices :

• Addressing

• Broadcasting

• Transmission mode

• Baud rate

• Character format

• Electrical interface parameter

Two implementation classes are proposed, the Basic and the Regular classes.
The regular class must provide configuration capabilities.

 BASIC REGULAR Default value

Addressing Slave :
configurable address
from 1 to 247

Master :
to be able to address
a slave from address
1 to 247

Same as Basic -

Broadcast Yes Yes -

Baud Rate 9600 (19200 is also recommended) 9600, 19200 + additional configurable
baud rates

19200
(if implemented,
else 9600)

Parity EVEN EVEN + possibility to configure NO and
ODD parity

EVEN

Mode RTU RTU + ASCII RTU

Electrical Interface

RS485 2W-cabling
or RS232

RS485 2W-cabling (and 4W-cabling as an
additional option)
or RS232

RS485 2W-cabling

Connector Type RJ 45 (recommended) -

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 35/44
Dec 20, 2006

6 Appendix

6.1 Appendix A - Management of Serial Line Diagnostic Counters

6.1.1 General description

MODBUS Serial Line defines a list of diagnostic counters to allow performance and error management.
These counters are accessible using the MODBUS application protocol and its Diagnostic function (function code 08).
Each counter can be get by a sub-function code bound to the counter number. All counters can be cleared using the sub-function
code 0x0A.
The format of the Diagnostic function is described in the MODBUS application protocol specification.
Herein is the list of diagnostics and associated sub-function codes supported by a serial line device.

Sub-
function
code

Counter
number

Hex Dec

Counters Name Comments
(for diagram below)

0x0B 1 Return Bus Message Count Quantity of messages that the remote device has detected on the
communications system since its last restart, clear counters operation,
or power–up. Messages with bad CRC are not taken into account.

0x0C 2 Return Bus Communication Error
Count

Quantity of CRC errors encountered by the remote device since its last
restart, clear counters operation, or power–up. In case of an error
detected on the character level, (overrun, parity error), or in case of a
message length < 3 bytes, the receiving device is not able to calculate
the CRC. In such cases, this counter is also incremented.

0x0D 3 Return Slave Exception Error Count Quantity of MODBUS exception error detected by the remote device
since its last restart, clear counters operation, or power–up. It
comprises also the error detected in broadcast messages even if an
exception message is not returned in this case.
Exception errors are described and listed in "MODBUS Application
Protocol Specification" document.

0xOE 4 Return Slave Message Count Quantity of messages addressed to the remote device, including
broadcast messages, that the remote device has processed since its
last restart, clear counters operation, or power–up.

0x0F 5 Return Slave No Response Count Quantity of messages received by the remote device for which it
returned no response (neither a normal response nor an exception
response), since its last restart, clear counters operation, or power–up.
Then, this counter counts the number of broadcast messages it has
received.

0x10 6 Return Slave NAK Count Quantity of messages addressed to the remote device for which it
returned a Negative Acknowledge (NAK) exception response, since its
last restart, clear counters operation, or power–up. Exception
responses are described and listed in "MODBUS Application Protocol
Specification" document.

0x11 7 Return Slave Busy Count Quantity of messages addressed to the remote device for which it
returned a Slave Device Busy exception response, since its last restart,
clear counters operation, or power–up. Exception responses are
described and listed in "MODBUS Application Protocol Specification"
document

0x12 8 Return Bus Character Overrun Count Quantity of messages addressed to the remote device that it could not
handle due to a character overrun condition, since its last restart, clear
counters operation, or power–up. A character overrun is caused by data
characters arriving at the port faster than they can be stored, or by the
loss of a character due to a hardware malfunction.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 36/44
Dec 20, 2006

6.1.2 Counters Management Diagram

The following diagrams describe when each previous counters must be incremented.

3

Rest

reception

YES NO

YES NO

CRC incorrect

 reception
255 characters
 max

character error

3 characters silence

NO

YES

 error on at least
1 frame character

 length
< 3 bytes

 slave
number 0

NO

1

YES NO

 length
incorrect

NOaddressing
incorrect

 data
 incorrect

2

exception
n° 3

CPT3 = CPT3 + 1

exception
n° 2

CPT3 = CPT3 + 1

exception
n° 3

CPT3 = CPT3 + 1

NO

NO

YES

YES slave number
=

workstation slave
number

function code
not known

YES

YES

YES

NO

CPT8 = CPT8 + 1

CPT1 = CPT1 + 1
CPT2 = CPT2 + 1

CPT5 = CPT5 + 1

CPT4 = CPT4 + 1

exception
n° 1

CPT3 = CPT3 + 1

YES

character overrun

end of frame detected

CPT1 = CPT1 + 1

NOYES

CPT4 = CPT4 + 1

!

CPT5 = CPT5 + 1

slave number
= 0

NO

reception max
number

characters

slave number = 0
or

slave number = my slave
number

IDLE

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 37/44
Dec 20, 2006

3

YES NOfunction code

YES NO

prohibited in
broadcasts

YES NO length
incorrect

YES NOaddressing
incorrect

YES NOdata
incorrect

2

CPT3 = CPT3 + 1

1

function code
not known

exception response

2

CPT3 = CPT3 + 1

application
processing

processing
error

NOYES

broadcast
NOYES

broadcast
NOYES

response

3

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 38/44
Dec 20, 2006

6.2 Appendix B - LRC/CRC Generation

6.2.1 LRC Generation

The Longitudinal Redundancy Checking (LRC) field is one byte, containing an 8–bit binary value. The LRC value is calculated by the
transmitting device, which appends the LRC to the message. The device that receives recalculates an LRC during receipt of the
message, and compares the calculated value to the actual value it received in the LRC field. If the two values are not equal, an error
results.
The LRC is calculated by adding together successive 8–bit bytes in the message, discarding any carries, and then two’s
complementing the result. The LRC is an 8–bit field, therefore each new addition of a character that would result in a value higher than
255 decimal simply ‘rolls over’ the field’s value through zero. Because there is no ninth bit, the carry is discarded automatically.
A procedure for generating an LRC is:
1. Add all bytes in the message, excluding the starting ‘colon’ and ending CRLF. Add them into an 8–bit field, so that

 carries will be discarded.
2. Subtract the final field value from FF hex (all 1’s), to produce the ones–complement.
3. Add 1 to produce the twos–complement.

Placing the LRC into the Message
When the 8–bit LRC (2 ASCII characters) is transmitted in the message, the high–order character will be transmitted first, followed by
the low–order character. For example, if the LRC value is 61 hex (0110 0001):

Colon Addr Func Data
Count

Data Data Data Data LRC
Hi

CR LFLRC
Lo

 "6" "1"
0x36 0x31

Figure 29: LRC Character Sequence

Example: an example of a C language function performing LRC generation is shown below.
The function takes two arguments:

unsigned char *auchMsg; A pointer to the message buffer containing binary data to be used for generating the LRC,
unsigned short usDataLen; The quantity of bytes in the message buffer.

LRC Generation Function
static unsigned char LRC(auchMsg, usDataLen) /* the function returns the LRC as a type unsigned char */
unsigned char *auchMsg ; /* message to calculate LRC upon */
unsigned short usDataLen ; /* quantity of bytes in message */
{
 unsigned char uchLRC = 0 ; /* LRC char initialized */
 while (usDataLen––) /* pass through message buffer */
 uchLRC += *auchMsg++ ; /* add buffer byte without carry */
 return ((unsigned char)(–((char)uchLRC))) ; /* return twos complement */
}

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 39/44
Dec 20, 2006

6.2.2 CRC Generation

The Cyclical Redundancy Checking (CRC) field is two bytes, containing a 16–bit binary value. The CRC value is calculated by the
transmitting device, which appends the CRC to the message. The device that receives recalculates a CRC during receipt of the
message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error
results.
The CRC is started by first preloading a 16–bit register to all 1’s. Then a process begins of applying successive 8–bit bytes of the
message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start
and stop bits and the parity bit, do not apply to the CRC.
During generation of the CRC, each 8–bit character is exclusive ORed with the register contents. Then the result is shifted in the
direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and
examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes
place.
This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next 8–bit character is exclusive ORed
with the register’s current value, and the process repeats for eight more shifts as described above. The final content of the register,
after all the characters of the message have been applied, is the CRC value.
A procedure for generating a CRC is:

1. Load a 16–bit register with FFFF hex (all 1’s). Call this the CRC register.
2. Exclusive OR the first 8–bit byte of the message with the low–order byte of the 16–bit CRC register, putting the result in the

CRC register.
3. Shift the CRC register one bit to the right (toward the LSB), zero–filling the MSB. Extract and examine the LSB.
4. (If the LSB was 0): Repeat Step 3 (another shift).
 (If the LSB was 1): Exclusive OR the CRC register with the polynomial value 0xA001 (1010 0000 0000 0001).
5. Repeat Steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8–bit byte will have been

processed.
6. Repeat Steps 2 through 5 for the next 8–bit byte of the message. Continue doing this until all bytes have been processed.
7. The final content of the CRC register is the CRC value.
8. When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

Placing the CRC into the Message
When the 16–bit CRC (two 8–bit bytes) is transmitted in the message, the low-order byte will be transmitted first, followed by the high-
order byte.
For example, if the CRC value is 1241 hex (0001 0010 0100 0001):

Addr Func Data
Count

Data Data Data Data CRC
Lo

CRC
Hi

0x41 0x12

Figure 30: CRC Byte Sequence

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 40/44
Dec 20, 2006

Calculation algorithm of the CRC 16

OxFFFF → CRC16

CRC16 XOR BYTE → CRC16

N = 0

Move to the right CRC16

Carry over

CRC16 XOR POLY → CRC 16

N = N + 1

N > 7

YesNo

No Yes

End of message
YesNo

END

Following BYTE

XOR = exclusive or
N = number of information bits
POLY = calculation polynomial of the CRC 16 = 1010 0000 0000 0001
(Generating polynomial = 1 + x2 + x 15 + x 16)
In the CRC 16, the 1st byte transmitted is the least significant one.

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 41/44
Dec 20, 2006

Example of CRC calculation (frame 02 07)

CRC register initialization 1111 1111 1111 1111
XOR 1st character 0000 0000 0000 0010
 1111 1111 1111 1101
 Move 1 0111 1111 1111 1110|1
Flag to 1, XOR polynomial 1010 0000 0000 0001
 1101 1111 1111 1111
 Move 2 0110 1111 1111 1111|1
Flag to 1, XOR polynomial 1010 0000 0000 0001
 1100 1111 1111 1110
 Move 3 0110 0111 1111 11110
 Move 4 0011 0011 1111 11111
 1010 0000 0000 0001
 1001 0011 1111 1110
 Move 5 0100 1001 1111 11110
 Move 6 0010 0100 1111 11111
 1010 0000 0000 0001
 1000 0100 1111 1110
 Move 7 0100 0010 0111 11110
 Move 8 0010 0001 0011 11111
 1010 0000 0000 0001

 1000 0001 0011 1110
XOR 2nd character 0000 0000 0000 0111
 1000 0001 0011 1001
 Move 1 0100 0000 1001 11001
 1010 0000 0000 0001
 1110 0000 1001 1101
 Move 2 0111 0000 0100 11101
 1010 0000 0000 0001
 1101 0000 0100 1111
 Move 3 0110 1000 0010 01111
 1010 0000 0000 0001
 1100 1000 0010 0110
 Move 4 0110 0100 0001 00110
 Move 5 0011 0010 0000 10011
 1010 0000 0000 0001
 1001 0010 0000 1000
 Move 6 0100 1001 0000 01000
 Move 7 0010 0100 1000 00100
 Move 8 0001 0010 0100 00010

 Most significant least significant
The CRC 16 of the frame is then: 4112

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 42/44
Dec 20, 2006

Example
An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC values are
preloaded into two arrays, which are simply indexed as the function increments through the message buffer. One array contains all of
the 256 possible CRC values for the high byte of the 16–bit CRC field, and the other array contains all of the values for the low byte.
Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each new
character from the message buffer.
Note: This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped in the CRC value that
is returned from the function.
Therefore the CRC value returned from the function can be directly placed into the message for transmission.
The function takes two arguments:

unsigned char *puchMsg; A pointer to the message buffer containing binary data to be used for generating the CRC
unsigned short usDataLen; The quantity of bytes in the message buffer.

CRC Generation Function

unsigned short CRC16 (puchMsg, usDataLen) /* The function returns the CRC as a unsigned short type */
unsigned char *puchMsg ; /* message to calculate CRC upon */
unsigned short usDataLen ; /* quantity of bytes in message */
{

unsigned char uchCRCHi = 0xFF ; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF ; /* low byte of CRC initialized */
unsigned uIndex ; /* will index into CRC lookup table */

while (usDataLen--) /* pass through message buffer */
{

uIndex = uchCRCLo ^ *puchMsg++ ; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex] ;
uchCRCHi = auchCRCLo[uIndex] ;

}
return (uchCRCHi << 8 | uchCRCLo) ;

}

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 43/44
Dec 20, 2006

High-Order Byte Table
/* Table of CRC values for high–order byte */
static unsigned char auchCRCHi[] = {

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40

} ;

Low-Order Byte Table
/* Table of CRC values for low–order byte */
static char auchCRCLo[] = {

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,
0x40

};

MODBUS over serial line specification and implementation guide V1.02 Modbus-IDA.ORG

Modbus.org http://www.modbus.org/ 44/44
Dec 20, 2006

6.3 Appendix E - References

ANSI/ TIA/ EIA-232-F-1997 Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment
Employing Serial Binary Data Interchange.

ANSI/ TIA/ EIA-485-A-1998 Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint
Systems.

AWG "American Wire Gauge" is a standard method denoting wire diameter, it is used in the USA
 and in other countries; increasing gauge numbers give decreasing wire parameters.

See for example D.G. Fink and H.W. Beaty, Standard Handbook for Electrical Engineers,

13th Edition, McGraw-Hill, 1993.

MODBUS.org MODBUS application protocol specification

